
libRadtran
library for radiative transfer calculations

Edition 1.0 for libRadtran version 1.0
August 2004

Arve Kylling and Bernhard Mayer

Copyright c© 1997-2004 Arve Kylling, Bernhard Mayer.

This edition of the libRadtran documentation is consistent with version 1.0 of libRadtran.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Preface 1

Preface

libRadtran is a library of radiative transfer routines and programs. It has evolved from
the uvspec radiative transfer model. If you are not familiar with uvspec, please note the
following: The central program of the libRadtran package is an executable called uvspec
which can be found in the ‘tools’ directory. If you are interested in a user-friendly program
for radiative transfer calculations, this is the main information you need to know. A descrip-
tion of uvspec is provided in the first part of this manual, and examples including various
input files for different atmospheric conditions are provided in the examples directory.

The ‘tools’ directory also provides related utilities, like e.g. a mie program (mie), some
utilities for the calculation of the position of the sun (zenith, noon, sza2time), a few tools
for interpolation, convolution, and integration (spline, conv, integrate), and some other
small tools.

The second part of the manual (which is only available in the developer manual) describes
library routines which might be of interest if you want to write your own programs. The
documentation is far from complete at present. Available are routines to read ASCII files,
to do interpolations, integrations, convolutions, for Mie theory, to calculate the position of
the sun, and some other stuff. More might be available somewhen in the future.

Please note that this document is by no means complete. It is under rapid development
and major changes will take place.

Acknowledgements

Many people have already contributed to libRadtran’s development. In addition to
Arve Kylling (arve.kylling@nilu.no) and Bernhard Mayer (bernhard.mayer@dlr.de),
the following people have contributed to libRadtran or helped out in various other ways.

• The disort solver was developed by Knut Stamnes, Warren Wiscombe, S.C. Tsay, and
K. Jayaweera

• Warren Wiscombe provided the Mie code MIEV0, and the routines to calculate the
refractive indices of water and ice, REFWAT and ICEWAT.

• Seiji Kato (kato@aerosol.larc.nasa.gov) provided the correlated-k tables described
in Kato et al. (1999).

• Tom Charlock (t.p.charlock@larc.nasa.gov), Quiang Fu (qfu@atm.dal.ca), and
Fred Rose (f.g.rose@larc.nasa.gov) provided the most recent version of the Fu and
Liou code.

• David Kratz (kratz@aquila.larc.nasa.gov) provided the routines for the simulation
of the AVHRR channels described in Kratz (1995).

• Frank Evans (evans@nit.colorado.edu) provided the polradtran solver.
• Ola Engelsen provided data and support for different ozone absorption cross sections.
• Albano Gonzales (aglezf@ull.es) included the Yang et al. (2000), Key et al. (2002)

ice crystal parameterization.
• Tables for the radiative properties of ice clouds for different particle “habits” were

obtained from Jeff Key and Ping Yang, Yang et al. (2000), Key et al. (2002).

mailto:arve.kylling@nilu.no
mailto:bernhard.mayer@dlr.de
mailto:kato@aerosol.larc.nasa.gov
mailto:t.p.charlock@larc.nasa.gov
mailto:qfu@atm.dal.ca
mailto:f.g.rose@larc.nasa.gov
mailto:kratz@aquila.larc.nasa.gov
mailto:evans@nit.colorado.edu
mailto:aglezf@ull.es

2 libRadtran

• Paul Ricchiazzi (paul@icess.ucsb.edu) and colleagues allowed us to include the com-
plete gas absorption parameterization of their model SBDART into uvspec.

• Luca Bugliaro (luca.bugliaro@dlr.de) wrote the analytical TZS solver (thermal, zero
scattering).

• Many unnamed users helped to improve the code by identifying or fixing bugs in the
code.

— The Detailed Node Listing —

mailto:paul@icess.ucsb.edu
mailto:luca.bugliaro@dlr.de

Chapter 1: A Brief Overview of libRadtran 3

1 A Brief Overview of libRadtran

This manual documents how to install and use libRadtran and corresponds to libRadtran
version 1.0.

libRadtran is a collection of C and Fortran functions and subroutines useful for radiative
transfer calculations in the Earth’s atmosphere. In addition, programs in C, Fortran and
Perl using the libRadtran functions and subroutines are included to allow the user to develop
his/her own programs.

It is expected that the reader is familiar with radiative transfer terminology. In addition,
a variety of techniques and parameterizations from various sources are used. For more
information about the usefulness and applicability of these methods in certain contexts, the
user is referred to the referenced literature.

1.1 Radiative transfer calculations

The central program of the libRadtran package is called uvspec. It was originally de-
signed to calculate spectral irradiance in the ultraviolet and visible spectral ranges, hence
the name. Over the years, usvpec has evolved to become a tool for many applications, in-
cluding the simulation of instruments, the calculation of the radiation budget of the Earth,
or the development of remote sensing techniques. uvspec is driven with a human-readable
input file which allows the definition of the model input in a user-friendly way. Various
commands are available to specify the properties of the atmosphere, including Rayleigh
scattering, molecular absorbtion, aerosols, water and ice clouds, and the surface albedo. A
selection of several radiative transfer solvers is available to simulate different aspects of the
radiation field, including the disort solver and a pseudo-spherical version of this code, a
fast twostream code, Frank Evans’ polRadtran, and the three-dimensional MYSTIC code.

Radiative transfer calculations with uvspec are straightforward. The input to the ra-
diative transfer solver is specified in the ‘input_file’. Output is written to stdout and
can easily be re-directed into an ‘output_file’:

uvspec < input_file > output_file

The syntax of input and output is described in Section 2.1 [uvspec], page 5. Examples
of uvspec input and output files are found in the ‘examples’ directory.

1.2 Ozone retrieval from global irradiance measurements

Stamnes et al. (1991) described a method to derive the total ozone column from global
irradiance measurements. The method is based on the comparison of measured irradiance
ratios at two wavelengths in the UV part of spectrum with a synthetic chart of this ratio
computed for a variety of ozone values. One of the wavelengths should be appreciably
absorbed by ozone compared with the other. Typically choices are 305 and 340 nm. The
method is reliable under cloudfree conditions, but increasingly overestimates the ozone
column for optically thicker clouds, Mayer et al. (1998).

Within libRadtran the method is implemented with two pieces of software

4 libRadtran

Gen_o3_tab
Generates a look–up–table of ozone values as a function of the irradiance ratio
for a given pair of wavelengths and solar zenith angle.

read_o3_tab
Takes as input the measured ratio and solar zenith angle, reads the look–up–
table, and returns an ozone value.

The use of these tools is described in Section 2.9 [Geno3tab], page 50.

1.3 Cloud optical thickness from global irradiance
measurements

Stamnes et al. (1991) described a method to derive a representative cloud optical depth
from global irradiance measurements. The method compares the measured irradiance at a
wavelength were ozone absorption is minimal to irradiances generated by a radiative transfer
model as a function of cloud optical thickness. The method is very sensitive to the ground
albedo and independent measurement of the albedo are needed when there is snow on the
surface.

Within libRadtran the method is implemented with two pieces of software

Gen_wc_tab
Generates a look–up–table of water cloud optical depths for various solar zenith
angles for a given wavelength.

read_o3_tab
Takes as input the measured irradiance and solar zenith angle, reads the look–
up–table, and returns a cloud optical depth.

The use of these tools is described in Section 2.10 [Genwctab], page 51.

1.4 ... and much more

Apart from the above described programs, the ‘tools’ directory contains related utilities,
like e.g. a mie program (mie), a tool to calculate wavelength-dependent cloud properties
(cldprp), a simple shell script to add levels to existing profiles (addlevel), some utilities
for the calculation of the position of the sun (zenith, noon, sza2time), a few tools for
interpolation, convolution, and integration (spline, conv, integrate), and some other
small utilities. Generally, these programs will give some information about their purpose
and usage when called without arguments.

Chapter 2: Some useful tools 5

2 Some useful tools

2.1 uvspec

uvspec calculates the radiation field in the Earth’s atmosphere for a given set of input
parameters. It reads input from standard input, and outputs to standard output. It is
normally invoked in the following way:� �

uvspec < input_file > output_file
 	
The format of the input and output files are described below. Several realistic examples of
input files are subsequently given.

uvspec may produce a wealth of diagnostic messages and warnings, depending on your use
of verbose or quiet. Diagnostics, error messages, and warnings are written to stderr
while the uvspec output is written to stdout. To make use of this extra information, you
may want to write the standard uvspec output to one file and the diagnostic messages
to another. To do so, try (./uvspec < uvspec.inp > uvspec.out) >& verbose.txt. The
irradiances and radiances will be written to ‘uvspec.out’ while all diagnostic messages go
into ‘verbose.txt’. This method can also be used to collect uvspec error messages.

Warning: Please note the error checking on input variables is not complete at the mo-
ment. Hence, if you provide erroneous input, the outcome is unpredictable.

2.1.1 The uvspec input file

uvspec is controlled in a user-friendly way. The control options are named in a (hopefully)
intuitive way. In the following, several examples are given, how to create an input file, how
to define a cloudless sky atmosphere, how to add aerosols and clouds, etc. All following
examples are taken from the libRadtran examples directory and are part of the uvspec self-
check. For a complete listing and explanation of all input options, have a look at section
Section 2.1.3 [Complete description of input parameters], page 21.

The uvspec input file consists of single line entries, each making up a complete input to
the uvspec program. First on the line comes the parameter name, followed by one or more
parameter values. The parameter name and the parameter values are separated by white
space. Filenames are entered without any surrounding single or double quotes. Comments
are introduced by a #. Blank lines are ignored.

2.1.1.1 Cloudless, aerosol-free atmosphere

The simplest possible input file contains only a few lines:

6 libRadtran� �
Location of atmospheric profile file.

atmosphere_file ../data/atmmod/afglus.dat

Location of the extraterrestrial spectrum
solar_file ../data/solar_flux/atlas_plus_modtran

wavelength 310.0 310.0 # Wavelength range [nm]

 	
The first three statements define the location of some data files: the uvspec data

path (data_files_path) where all internal files are expected, the atmospheric profile
(atmosphere_file), and the extraterrestrial spectrum (solar_file). The last line de-
fines the desired wavelength range which is a monochromatic data point in this example.
All other data which are not explicitely mentioned assume a default value which is "0" in
most cases. Here, the solar zenith angle is 0, the surface albedo is 0, and the atmosphere
does not contain clouds nor aerosols. Pressure, temperature, ozone concentration, etc. are
read from atmosphere_file.

An example of a more complete input file for a clear sky atmosphere is� �
Location of atmospheric profile file.

atmosphere_file ../data/atmmod/afglus.dat
Location of the extraterrestrial spectrum

solar_file ../data/solar_flux/atlas_plus_modtran
ozone_column 300. # Scale ozone column to 300.0 DU
day_of_year 170 # Correct for Earth-Sun distance
albedo 0.2 # Surface albedo
sza 32.0 # Solar zenith angle
rte_solver disort # Radiative transfer equation solver
deltam on # delta-M scaling on
nstr 6 # Number of streams
wavelength 299.0 341.0 # Wavelength range [nm]
slit_function_file ../examples/TRI_SLIT.DAT

Location of slit function
spline 300 340 1 # Interpolate from first to last in step

quiet

 	
The atmosphere model, i.e. pressure, temperature, and ozone concentration profiles are
read from ../data/atmmod/afglus.dat. The extraterrestrial solar flux is read from the
file ../data/solar_flux/atlas_plus_modtran.

A wavelength dependent surface albedo may be specified using albedo_file instead of
albedo. Non-Lambertian surface reflectance (BRDF) for vegetation and water may also
be defined (please note that these require the use of rte_solver disort2. The BRDF of
Vegetation is specified using rpv_rho0, rpv_k, and rpv_theta, following the definition of
Rahman et al. (1993). Wavelength-dependent BRDF for vegetation can be defined with
rpv_file. The BRDF of water surfaces is parameterized following Cox and Munk (1954a,

Chapter 2: Some useful tools 7

1954b) and Nakajima (1983). The respective parameters are the wind speed cox_and_
munk_u10, the pigment concentration cox_and_munk_pcl, and the salinity cox_and_munk_
sal. A complete description of these parameters is given in section Section 2.1.3 [Complete
description of input parameters], page 21.

It is helpful to know some details about the input/output wavelength resolution in uvspec
and how it can be influenced by the user. Basically there are three independent wavelength
grids, the input grid, the internal grid, and the output grid. The essential thing to know is
that the internal grid is chosen by uvspec itself in a reasonable way, if not explicitely defined
in the input file with transmittance_wl_file or molecular_tau_file. The output grid
is completely independent of the internal grid and is entirely defined by the solar_file.
The wavelength grid of all other input data (e.g. albedo, optical properties of aerosols and
clouds, etc) is also completely independent. These data are automatically interpolated to
the resolution of the internal wavelength grid. Hence, only two constraints are set to the
gridding of the input data: (1), the wavelength range has to cover all internal grid points;
and (2), it should be chosen in a reasonable manner to allow reasonable interpolation (which
essentially means, dense enough).

In the ultraviolet/visible, uvspec uses an internal grid with a step with of 0.5nm below
350nm and 1nm above 350nm. This is a conservative choice which fully resolves the broad
ozone absorption bands and the slowly varying Rayleigh, aerosol, and cloud extinctions.
The idea is outlined in the following figure which is taken from Mayer et al. (1997):

300 320 340 360 380 400
Wavelength [nm]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
ra

ns
m

itt
an

ce
T

A

300 320 340 360 380 400
Wavelength [nm]

0
200
400
600
800

1000
1200
1400
1600
1800

E
0

[m
W

/(
m

2
nm

)]

300 320 340 360 380 400
Wavelength [nm]

0

200

400

600

800

1000

1200

1400

1600

1800

E
[m

W
/(

m
2

nm
)]

The transmittance (or reflectance) is calculated on a moderate resolution grid which
reduces the number of calls to the rte_solver and hence the computational time. Then,
the transmittance is interpolated to the wavelengths in the solar_file (which is usually
defined with higher spectral resolution), multiplied with the extraterrestrial irradiance, and
possibly post-processed. Hence, the wavelength in the output spectrum are those contained
in the solar_file which has two important implications: (1) Only those wavelengths are
output that are contained in the solar_file. If e.g. a monochromatic calculation is defined
by setting ’wavelength 327.14 327.14’, there will only be output if the wavelength 327.14
is explicitely listed in solar_file; (2) this is also true at thermal wavelengths where the
extraterrestrial irradiance is zero; hence, even for a calculation in the thermal range a solar_

8 libRadtran

file can be specified which defines the output grid in the first column and arbitrary values in
the second column. Keeping these points in mind, solar_file is a convenient way to define
an arbitrary output grid. solar_file may be omitted for thermal radiation calculations
(source thermal) as well as for transmittance and reflectivity calculations. If omitted,
the output grid equals the internal wavelength grid.

If required, a user-defined internal grid can be specified with transmittance_wl_file
or molecular_tau_file. Note that this is a way to speed up the calculation considerably.
E.g., for some applications the internal grid in the UV-A and visible can be set to 10nm
which would reduce computational times by up to a factor of 10.

Things are completely different if one of the correlated_k parameterizations is selected
(see below). In this case all flexibility is taken away from the user which is an inherent
feature of the k distribution method. Internal grid as well as the extraterrestrial file are in
this case defined by the choice of the parameterization itself.

2.1.1.2 Spectral resolution

uvspec offers four different ways of spectral calculations:

1. Spectrally resolved calculation in the UV and visible spectral ranges;
2. Line-by-line calculation with user-defined molecular absorption data;
3. The correlated-k method.
4. Pseudo-spectral calculation with exponential-sum-fit, adopted from SBDART (Ricchi-

azzi et al., 1998);

The choice of the method is determined by the problem and the decision is therefore
entirely up to the user. The spectrally resolved calculation and the line-by-line calculation
are more or less exact methods while the correlated-k distribution and the pseudo-spectral
calculation are approximations that provide a compromise between speed and accuracy. In
the following it is briefly described which method fits which purpose:

A spectrally resolved calculation is the most straightforward way, and will be the choice
for all users interested in the ultraviolet and visible spectral ranges. In the UV/vis gas
absorption generally occurs in broad bands with only slow spectral variation, the most
important of these being the Hartley, Huggins, and Chappuis bands of ozone. Hence, a
radiative transfer calculation every 1nm usually is sufficient to fully resolve any spectral
variation using the method described in the last section. Absorption cross sections for
various species are included, among them the most important O3 and NO2.

In the infrared, however, molecular absorption spectra are characterized by thousands of
narrow absorption lines. There are two ways to treat these, either by highly resolved spectral
calculations, so-called line-by-line calculations, or by a band parameterization. Concerning
line-by-line, uvspec offers the possibility to define a spectrally resolved absorption cross
section profile using molecular_tau_file. There is no option in libRadtran to generate
such a molecular_tau_file, because (1) the HITRAN database which forms the basis for
such calculations amounts to about 100 MByte which are updated continuously; and (2),
there are sophisticated line-by-line programs available, like e.g. genln2 (Edwards, 1992).
Using genln2 it is straightforward to create the input for uvspec line-by-line calculations. It
is also planned to make line-by-line cross sections available for the six standard profiles that

Chapter 2: Some useful tools 9

come with libRadtran. The following figure shows an example of a line-by-line calculation
of the atmospheric transmittance in two selected solar and thermal spectral ranges, the
O2A-absorption band around 760nm and a region within the infrared window around 10
micron.

750 755 760 765 770 775

Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ra

ns
m

itt
an

ce

9000 9500 10000 10500 11000

Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

All spectral lines in the left figure are due to absorption by oxygen, while the ones in
the left figure are due to ozone, water vapour, and CO2. Line-by-line is obviously the exact
way for radiation calculations. For most applications, however, line-by-line is far too slow.
Here one needs a band parameterization, and the most accurate of these is the so-called
correlated-k approximation. uvspec contains several correlated-k parameterizations which
are invoked with correlated_k, in particular Kato et al. (1999), Fu and Liou (1992/93),
Kratz (1995), as well as the possibility to specify a user-defined one. Kato et al. (1999)
is a accurate parameterization for the solar spectral range. uvspec contains three different
versions:

Kato The original tables provide by Seiji Kato which should correspond to the full
version described in Kato et al. (1999); 575 subbands total, that is, 575 calls
to the rte_solver

Kato2 A new, optimized version of the tables, provided by Seiji Kato, 2003, with only
148 subbands (that is, calls to the rte_solver); the uncertainty is only slightly
higher than Kato; the absorption coefficients are based on HITRAN 2000.

Kato2.96 Similar to Kato2 but based on HITRAN96.

The following Figure shows a comparison between the three parameterization which are
part of libRadtran and the data from Figure 3 by Kato et al. [1999]. It is immediately
obvious that the uncertainty is high for all bands above 2.5 micron which is probably due
to the treatment of band overlap. For this reasons, the results for the indiviudal bands
should not be trusted while the integrated shortwave radiation (the sum of all 32 bands)
is calculated with high accuracy because (1) the bands above 2.5 micron contribute only

10 libRadtran

little to the integrated irradiance; and (2) errors are random and cancel each other to some
degree.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is

si
vi

ty

MODTRAN (from Kato et al. [1999]
Kato et al [1999], optimized
Kato et al [1999], full
libRadtran, KATO2.96
libRadtran, KATO2
libRadtran, KATO

For more information on these parameterizations please refer to the mentioned publica-
tions. Correlated-k is a powerful way to calculate spectrally integrated quantities, however,
it takes away some flexibility. In particular, this means that the wavelength grid is no longer
chosen by the user but by the parameterization, that is, by uvspec. The uvspec output
is then no longer spectral quantities, e.g. W / (m2 nm), but integrated over the spectral
bands, e.g. W / m2.

A simple but complete example for a correlated-k approximation of the solar spectrum:

Chapter 2: Some useful tools 11� �
Conditions for the calculation of Figure 3 in
Kato et al., JQSRT 62, 109-121, 1999.
To compare the data, the direct irradiance calculated
by uvspec has to be divided by cos(30 deg) because
Kato et al. plot direct normal irradiance.

Location of atmospheric profile file.
atmosphere_file ../examples/AFGLMS50.DAT

Location of the extraterrestrial spectrum

albedo 0.2 # Surface albedo
sza 30.0 # Solar zenith angle
rte_solver twostr # Radiative transfer equation solver

correlated_k KATO # Correlated-k by Kato et al. [1999]

quiet
 	
Here, the solar spectrum is split up into 32 bands according to Kato et al. (1999). In

order to calculate integrated shortwave irradiance, simply sum the outputs, or even simpler,
add output sum to the input file.

For pseudo-spectral calculations in the whole spectral range, we have adopted the molec-
ular absorption parameterization from SBDART by Ricchiazzi et al. (1998). The respective
section of this paper says:

SBDART relies on low-resolution band models developed for the LOWTRAN
7 atmospheric trans-mission code (Pierluissi and Peng, 1985). These models
provide clear-sky atmospheric transmission from 0 to 50000 cm-1 and include
the effects of all radiatively active molecular species found in the earth s at-
mosphere. The models are derived from detailed line-by-line calculations that
are degraded to 20 cm-1 resolution for use in LOWTRAN. This translates to
a wavelength resolution of about 5 nm in the visible and about 200 nm in the
thermal infrared. These band models represent rather large wavelength bands,
and the transmission functions do not necessarily follow Beers Law. This means
that the fractional transmission through a slab of material depends not only on
the slab thickness, but also on the amount of material penetrated before enter-
ing the slab. Since the radiative transfer equation solved by SBDART assumes
Beers Law behavior, it is necessary to express the transmission as the sum of
several exponential functions (Wiscombe and Evans, 1977). SBDART uses a
three-term exponential fit, which was also obtained from LOWTRAN 7. Each
term in the exponential fit implies a separate solution of the radiation transfer
equation. Hence, the RT equation solver only needs to be invoked three times
for each spectral increment. This is a great computational economy compared
to a higher order fitting polynomial, but it may also be a source of significant
error.

The SBDART gas parameterization is invoked with correlated_k SBDART. The spec-
tral resolution may be arbitrarily chosen by the user. If not explicitely defined with
transmittance_wl_file, an internal grid with a step width of 0.5nm below 350nm and 1nm
above 350nm is chosen which is practically overkill for most applications in the infrared. An

12 libRadtran

extraterrestrial spectrum covering the complete solar range is provided at two different reso-
lutions, data/solar_flux/kurudz_1.0nm.dat and data/solar_flux/kurudz_0.1nm.dat.
An example for the solar range is shown in examples/UVSPEC_SBDART_SOLAR.INP:

� �
atmosphere_file ../data/atmmod/afglus.dat
solar_file ../data/solar_flux/kurudz_1.0nm.dat

albedo 0.2 # Surface albedo
sza 30.0 # Solar zenith angle

rte_solver twostr # Radiative transfer equation solver
wavelength 250.0 2500.0 # Wavelength range

correlated_k SBDART # select SBDART molecular absorption

quiet
 	

while examples/UVSPEC_SBDART_THERMAL.INP shows how to do a thermal calculation:

� �
uvspec data files
data_files_path ../data/
atmosphere_file ../examples/AFGLUS.70KM
solar_file ../examples/UVSPEC_SBDART_THERMAL.TRANS

source thermal

rte_solver twostr # Radiative transfer equation solver
transmittance_wl_file ../examples/UVSPEC_SBDART_THERMAL.TRANS

correlated_k SBDART # select SBDART molecular absorption

quiet
 	

Chapter 2: Some useful tools 13

500 1000 1500 2000 2500 3000

Wavelength [nm]

0

200

400

600

800

1000

1200

1400

1600

1800

2000
D

ow
nw

ar
d

su
rf

ac
e

ir
ra

di
an

ce
[m

W
/(

m
2

nm
)]

0 20000 40000 60000 80000 100000

Wavelength [nm]

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

D
ow

nw
ar

d
su

rf
ac

e
ir

ra
di

an
ce

[m
W

/(
m

2
nm

)]

The figure shows the results of the solar and thermal calculations. The water vapour
absorption bands in the solar range are clearly visible, as is the absorption window around
10 micron in the thermal. Please note the following points:

• Thermal radiation is per default output in W/(m2 cm-1), see documentation of
thermal_bandwith and thermal_bands_file. To convert e.g. to W/(m2 nm)
multiply with k/lambda where k is the wavenumber [cm-1] and lambda is the
wavelength [nm]. To calculate band-integrated thermal quantities please consider
thermal_bands_file.

• Even though no extraterrestrial irradiance is required, a solar_file may be specified
for the thermal case. The reason is that, as explained initially, the solar_file defines
the output grid. The second column in solar_file can be chosen arbitrarily in this
case because it is ignored.

• For the choice of the wavelength grid for the calculation (transmittance_wl_grid)
please consider that the resolution of the absorption parameterization is 5cm-1 which
converts to 0.3nm at 750nm and to 50nm at 10 micron. Choosing higher resolutions
for the internal wavelength grid (transmittance_wl_file) is usually a waste of com-
putational time.

• Please also make sure to choose a fine enough spectral resolution in order to capture
all absorption features.

The following figure shows two selected wavelength intervals of the solar and thermal
range, to demonstrate the spectral resolution of the SBDART absorption parameterization.

14 libRadtran

750 755 760 765 770 775

Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
T

ra
ns

m
itt

an
ce

9000 9500 10000 10500 11000

Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

The resolution is about 5cm-1 which translates to about 0.3nm in the left figure (oxygen
A-band) and 50nm in the right figure (ozone absorption band in the atmospheric window).
Compare this figure to the above line-by-line example to get an impression about the dif-
ferences between both methods.

2.1.1.3 Aerosol

All options to set up and modify aerosol properties start with aerosol_. Aerosols may
be specified in a hierarchical way. The most simple way to define an aerosol is by the com-
mand aerosol_default which will set up the aerosol model by E.P. Shettle, "Models of
aerosols, clouds and precipitation for atmospheric propagation studies", in "Atmospheric
propagation in the uv, visible, ir and mm-region and related system aspects", AGARD
Conference Proceedings (454), 1989. The default properties are a rural type aerosol in
the boundary layer, background aerosol above 2km, spring-summer conditions and a vis-
ibility of 50km. These settings may be modified with aerosol_haze, aerosol_vulcan,
aerosol_season, and aerosol_visibility. More information can be introduced step
by step, overwriting the default parameters. aerosol_tau_file, aerosol_ssa_file, and
aerosol_gg_file, can be used to define the profiles of optical thickness, single scatter-
ing albedo, and asymmetry parameter. The integrated optical thickness can be set to
a constant value using aerosol_set_tau or scaled with aerosol_scale_tau. The sin-
gle scattering albedo may be scaled by aerosol_scale_ssa or set to a constant value
by aerosol_set_ssa. The aerosol asymmetry factor may be set by aerosol_set_gg. The
wavelength dependence of the aerosol optical depth is specified using the aerosol_angstrom
parameter. aerosol_moments_file allows specification of the scattering phase function.
If microphysical properties are available these may be introduced by defining the complex
index of refraction aerosol_refrac_index or aerosol_refrac_file and the size distri-
bution aerosol_sizedist_file. Finally, one may define the aerosol optical properties of
each layer explicitely using aerosol_files.

The following list is an overview of the aerosol description parameters. The entries are
arranged in a way that a parameter ’overwrites’ all values higher up in the list.

Chapter 2: Some useful tools 15

aerosol_default
Generate default aerosol according to Shettle (1989)

aerosol_vulcan, aerosol_haze, aerosol_season, aerosol_visibility
Set Shettle (1989) aerosol properties (aerosol type, visibility)

aerosol_files
Specify optical properties of each layer explicitly, that is, extinction coefficient,
single scattering albedo, and the moments of the phase function (everything as
a function of wavelength).

aerosol_tau_file, aerosol_ssa_file, aerosol_gg_file
Overwrite profiles of optical thickness, single scattering albedo, and asymmetry
parameter

aerosol_moments_file
Specify a phase function to be used instead of the Henyey-Greenstein phase
function

aerosol_refrac_index, aerosol_refrac file, aerosol_sizedist_file
Calculate optical properties from size distribution and index of refraction using
Mie theory. Here is an exception from the rule that ALL values defined above
are overwritten because the optical thickness profile is re-scaled so that the
optical thickness at the first internal wavelength is unchanged. It is done that
way to give the user an easy means of scaling the specifying the optical thickness
at a given wavelength.

aerosol_set_gg, aerosol_set_ssa, aerosol_scale_ssa, aerosol_set_tau,
aerosol_scale_tau

Overwrite profiles of asymmetry parameter and single scattering albedo

aerosol_angstrom
Overwrite the profile of the optical thickness.

An example for a uvspec aerosol description is� �
include ../examples/UVSPEC_CLEAR.INP

aerosol_vulcan 1 # Aerosol type above 2km
aerosol_haze 6 # Aerosol type below 2km
aerosol_season 1 # Summer season
aerosol_visibility 20.0 # Visibility
aerosol_angstrom 1.1 0.2 # Scale aerosol optical depth

using Angstrom alpha and beta
coefficients

aerosol_scale_ssa 0.85 # Scale the single scattering albedo
for all wavelengths

aerosol_set_gg 0.70 # Set the asymmetry factor
aerosol_tau_file ../examples/AERO_TAU.DAT

File with aerosol optical depth profile
 	

16 libRadtran

By combining this with the clear sky example given above a complete uvspec input file
including aerosol is constructed.

2.1.1.4 Water clouds

All options to set up and modify water cloud properties start with wc_.

The easiest way to define a water cloud is to specify a wc_file which defines the liquid
water content and effective droplet radius at each model level. By combining the following
lines with the clear sky example given above a complete uvspec input file including water
clouds is constructed.� �

include ../examples/UVSPEC_CLEAR.INP

wc_file ../examples/WC.DAT # Location of water cloud file
wc_set_tau 15. # Set total water cloud optical depth
 	

A typical example for a wc file looks like:� �
z LWC R_eff
(km) (g/m^3) (um)

5.000 0 0
4.000 0.2 12.0
3.000 0.1 10.0
2.000 0.1 8.0
 	

The three columns are the level altitude [km], the liquid water content [g/m3], and the
effective droplet radius [micron]. Per default, these quantities are defined at the given model
levels, that is, the value 0.2 g/m3 refers to altitude 4.0km, as e.g. in a radiosonde profile.
The properties of each layer are calculated as average over the adjacent levels. E.g. the
single scattering properties for the model layer between 3 and 4km are obtained by averaging
over the two levels 3km and 4km. To allow easy definition of sharp cloud boundaries, clouds
are only formed if both liquid water contents above and below the respective layer are larger
than 0. Hence, in the above example, the layers between 2 and 3 as well as between 3 and
4km are cloudy while those between 1 and 2km and between 4 and 5km are not.

wc_layer provides a useful alternative if one prefers to define layer quantities. If speci-
fied, the properties are interpreted as layer properties, and in the above example, the cloud
would extend from 2 to 5km, with e.g. a LWC of 0.2 g/m3 for the layer between 4 and 5km.
To make sure that the clouds really look as you want them to look, it is recommended to
use the verbose option. This option shows not only where the cloud is actually placed, it
rather tells the user exactly how LWC and effective radius are translated into optical prop-
erties, depending on the choice of parameterisation. Please also note that the definition of
the empty top level at 5km is important to tell uvspec where the cloud ends. If omitted,
the cloud would extend all the way to the top of the atmosphere.

Chapter 2: Some useful tools 17

There are different ways to convert the microphysical properties to optical properties.
Either a parameterization is used, like the one by Hu and Stamnes (1993) (which is the
default), or by Mie calculations. The latter are very time-consuming, hence we decided not
to include these online into uvspec but rather have an option to read in pre-calculated
Mie tables. The option wc_properties controls the method: hu selects the Hu and
Stamnes (1993) parameterization, mie selects pre-calculated Mie tables which are available
at http://www.libradtran.org. If wc_properties mie is selected, the model expects one
Mie cloud property file for each internal wavelength which is useful for the fixed wavelength
grids used by the correlated-k parameterisations correlated_k kato, correlated_k fu,
etc. For a spectral calculation with free wavelength grid, there is also the possibility to use
a pre-defined set of Mie tables (available at the web site) and to defined wc_properties_
interpolate to automatically interpolate the Mie properties to the internal wavelength
grid. Although this is an extremely useful option, please use it careful because it might
consume enourmous amounts of memory. Finally, there is the option to define an arbi-
trary file which is in the format as generated by Frank Evans’ cloudprp which comes with
SHDOM, see http://nit.colorado.edu/~evans/shdom.html.

As for the aerosol, there are several options to modify the optical properties of the
clouds. And of course there is also the option of defining all cloud properties explicitely
using wc_files.

2.1.1.5 Ice clouds

Ice clouds are generated in a similar way to water clouds. All options to set up and
modify ice cloud properties start with ic_. The main difference between water and ice
clouds is that the latter usually consist of non-spherical particles. Hence, the conversion
from microphysical to optical properties is much less defined, and several parameterizations
are available. Please note in addition that there are different definitions of the effective
radius and e.g. the parameterizations by Key et al. (2002) and by Fu (1996) actually use
different definitions (see explanation of ic_properties). Finally, the sharp forward peak
which is typical for ice particles is also treated differently: E.g. Fu (1996) provides delta-
scaled optical properties while Key et al. (2002) uses unscaled parameters (see explanation
of ic_fu_tau). The following figure illustrates the implications. Plotted are extinction
coefficient, asymmetry parameter, and single scattering albedo for ice clouds as a function
of wavelength. If treated consistently, both Key et al. (2002) and Fu (1996) provide nearly
identical results (blue and red solid line). However, Fu (1996) uses a different definition of
effective radius and recommends to use the delta-scaled properties (red dotted line). The
larger part of the difference compared to the solid line is due to delta-scaling which can be
seen by comparing the red dotted (delta-scaled) and red-dashed (not delta-scaled) lines.

18 libRadtran

500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

90

100
E

xt
in

ct
io

n
[k

m
-1

/(
g/

m
3)]

500 1000 1500 2000 2500 3000 3500 4000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
sy

m
m

et
ry

pa
ra

m
et

er
g

500 1000 1500 2000 2500 3000 3500 4000

Wavelength [nm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
ng

le
sc

at
te

ri
ng

al
be

do

Fu [1996], not -scaled, reff adjusted
Fu [1996], not -scaled
Fu [1996], -scaled (default)
Key et al. [2002] (default)

Chapter 2: Some useful tools 19

2.1.1.6 Calculation of radiances

To calculate radiances the following lines will do the job when combined with the clear
sky example above� �

include ../examples/UVSPEC_AEROSOL.INP # Include’s may be nested.

rte_solver disort2 # This override what is specified in above file
and files included in that file etc.

phi0 40.0 # Solar azimuth angle
umu -1.0 -0.5 -0.2 -0.1 # Output cosine of polar angle
phi 0.0 45. 90. 135. 180.0 225. 270.0 # Output azimuth angles
 	

More examples with output are found in the ‘examples’ directory.

2.1.2 The uvspec output

The uvspec output differs for the different solvers and is currently fixed for each solver.
We hope to make it user controllable in the future.

2.1.2.1 DISORT, SDISORT and SPSDISORT

For the disort, sdisort and spsdisort solvers uvspec outputs one block of data to standard
output (stdout) for each wavelength. The format of the block is

lambda rfldir rfldn flup uavgso uavgdn uavgup

if umu is not specified. If umu is specified the format of the block is

lambda rfldir rfldn flup uavgso uavgdn uavgup
umu(0) u0u(umu(0))
umu(1) u0u(umu(1))

. .

. .

If both umu and phi is specified the output format of each block is

lambda rfldir rfldn flup uavgso uavgdn uavgup
phi(0) ... phi(m)

umu(0) u0u(umu(0)) uu(umu(0),phi(0)) ... uu(umu(0),phi(m))
umu(1) u0u(umu(1)) uu(umu(1),phi(0)) ... uu(umu(1),phi(m))

. . . .

. . . .
umu(n) u0u(umu(n)) uu(umu(n),phi(0)) ... uu(umu(n),phi(m))

and so on for each wavelength.

20 libRadtran

2.1.2.2 TWOSTR

The format of the output line for the twostr solver is

lambda rfldir rfldn flup uavg

for each wavelength.

2.1.2.3 POLRADTRAN

The output from the polradtran solver depends on the number of Stokes parameters,
polradtran_nstokes. For each wavelength the output block is

lambda down_flux(1) up_flux(1) ... down_flux(is) up_flux(is)

if phi is not specified. Here is is the number of Stokes parameters specified by polradtran_
nstokes. If phi and umu are specified the block is

lambda down_flux(1) up_flux(1) ... down_flux(is) up_flux(is)
phi(0) ... phi(m)

Stokes vector I
umu(0) u0u(umu(0)) uu(umu(0),phi(0)) ... uu(umu(0),phi(m))
umu(1) u0u(umu(1)) uu(umu(1),phi(0)) ... uu(umu(1),phi(m))
. . . .
. . . .

umu(n) u0u(umu(n)) uu(umu(n),phi(0)) ... uu(umu(n),phi(m))
Stokes vector Q
. . .
. . .

Note that polradtran outputs the total (=direct+diffuse) downward flux. Also note that
u0u is always zero for polradtran.

2.1.2.4 Description of symbols

In the above output blocks the symbols used have the following meaning.

cmu Computational polar angles from polradtran.

down_flux, up_flux
The total (direct+diffuse) downward (down flux) and upward (up flux) irradi-
ances. Same units as extraterrestrial irradiance.

lambda Wavelength (nm)

rfldir Direct beam irradiance (same units as extraterrestrial irradiance, e.g mW/(m2
nm) if using the ‘atlas3’ spectrum in the ‘data/solar_flux’ directory.)

rfldn Diffuse down irradiance, i.e. total minus direct beam (same units as rfldir).

flup Diffuse up irradiance (same units as rfldir).

uavg The mean intensity. Proportional to the actinic flux. (same units as rfldir).

Chapter 2: Some useful tools 21

uavgso Direct beam contribution to the mean intensity. (same units as rfldir).

uavgdn Diffuse downward radiation contribution to the mean intensity. (same units as
rfldir).

uavgup Diffuse upward radiation contribution to the mean intensity. (same units as
rfldir).

u0u The azimuthally averaged intensity at numu user specified angles umu. (units of
e.g. mW/(m2 nm sr) if using the ‘atlas3’ spectrum in the ‘data/solar_flux’
directory.)

uu The radiance (intensity) at umu and phi user specified angles. (units of e.g.
mW/(m2 nm sr) if using the ‘atlas3’ spectrum in the ‘data/solar_flux’ di-
rectory.)

uu_down, uu_up
The downwelling and upwelling radiances (intensity) at cmu and phi angles.
(units of e.g. mW/(m2 nm sr) if using the ‘atlas3’ spectrum in the
‘data/solar_flux’ directory.)

The total downward irradiance is given by

irr_down = rfldir + rfldn

The total mean intensity is given by

uavg = uavgso + uavgdn + uavgup

If deltam is on it does not make sense to look at the individual contributions to uavg since
they are delta-M scaled.

2.1.3 Complete description of input parameters

The uvspec input file consists of single line entries, each making up a complete input to
the uvspec program. First on the line comes the parameter name, followed by one or more
parameter values. The parameter name and the parameter values are separated by white
space. Filenames are entered without any surrounding single or double quotes. Comments
are introduced by a #. Blank lines are ignored. The order of the lines is not important,
with one exception: if the same input option is used more than once, the second one will
usually over-write the first one.

The various input parameters are described in detail below.

aerosol_angstrom
Scale the aerosol optical depth using the Ångström formula. Specify the
Ångström alpha and beta coefficients. The optical thickness defined here is
the integral from the user-definded altitude to TOA (top of atmosphere).

aerosol_default
Set up a default aerosol according to Shettle (1989). The default properties
are a rural type aerosol in the boundary layer, background aerosol above 2km,

22 libRadtran

spring-summer conditions and a visibility of 50km. These settings may be mod-
ified with aerosol_haze, aerosol_vulcan, aerosol_season, and aerosol_
visibility.

aerosol_files
A way to specify aerosol optical depth, single scattering albedo, and phase
function moments for each layer. The file specified by aerosol_files has two
columns where column 1 is the altitude in km. The altitudes must be the
same as those specified in the atmosphere_file. The second column is a the
name of a file which defines the optical properties of the layer starting at the
given altitude. The files specified in the second column must have the following
format:

Column 1: The wavelength in nm. These wavelengths may be different from
those in solar_file. Optical properties are interpolated to the
requested wavelengths.

Column 2: The extinction coefficient of the layer in units km-1.

Column 3: The aerosol single scattering albedo of the layer.

Column 4-(nmom+4):
The moments of the aerosol phase function.

For some simple examples see the files ‘examples/AERO_*.LAYER’. Note that if
using the rte_solver disort2 it makes good sense to make the number of mo-
ments larger than nstr. For rte_solver disort and rte_solver polradtran
the number of moments included in the calculations will be nstr+1. Higher or-
der moments will be ignored for these solvers. Please note that the uppermost
line of the aerosol_files denotes simply the top altitude of the uppermost
layer. The optical properties of this line are consequently ignored. There are
two options for this line: either an optical property file with zero optical thick-
ness is specified or "NULL" instead.

aerosol_gg_file
Location of aerosol asymmetry parameter file. The file must have two columns.
Column 1 is the altitude in km. The altitude grid must be exactly equal to the
altitude grid specified in the file atmosphere_file. Column 2 is the asymmetry
parameter of each layer. At present, the asymmetry parameter defined here is
constant with wavelength but it is planned to introduce the wavelength depen-
dence in the near future. Comments start with #. Empty lines are ignored.

aerosol_haze
Aerosol type in the lower 2 km of the atmosphere. Integer. See E.P. Shet-
tle, "Models of aerosols, clouds and precipitation for atmospheric propagation
studies", in "Atmospheric propagation in the uv, visible, ir and mm-region and
related system aspects", AGARD Conference Proceedings (454), 1989.

1 Rural type aerosols.

4 Maritime type aerosols.

5 Urban type aerosols.

Chapter 2: Some useful tools 23

6 Tropospheric type aerosols.

aerosol_moments_file
Location of aerosol moments file, a one-column file containing an arbitrary
number of Legendre terms of the phase function. The phase function p(µ) is

p(µ) =
∞∑

m=0

(2m + 1) · km · Pm(µ)

where km is the m’th moment and Pm(µ) is the m’th Legendre polynomial. If
not specified, a Henyey-Greenstein phase function is assumed where the asym-
metry parameter g is either a default value depending on the aerosol type or
may be specified using aerosol_set_gg.

aerosol_refrac_file
File containing the wavelength-dependent refractive index of the aerosol. Three
columns are expected: wavelength [nm] and the real and imaginary parts of the
refractive index. Together with aerosol_sizedist_file this forms the input
to Mie calculations of the aerosol optical properties. Attention: If the aerosol
properties are defined using the refractive index and the size distribution, the
wavelength dependence of the optical properties is determined by Mie theory.
At present there are three ways to define the absolute value of the optical thick-
ness: (1) visibility defines the profile at the first internal wavelength; for a
monochromatic calculation and in correlated-k mode, the first internal wave-
length equals the first wavelength output by uvspec; for spectral calculations,
the first wavelength might be a little bit smaller than the first wavelength out-
put by uvspec; (2) aerosol_tau_file defines the optical thickness profile at
the first internal wavelength; or (3) absolute optical thickness and wavelength-
dependence are defined by aerosol_angstrom. In future it is planned to also
allow the specification of absolute particle densities, etc.

aerosol_refrac_index
Wavelength-independent refractive index of the aerosol; if wavelength-
dependence is required, use aerosol_refrac_file instead. Together with
aerosol_sizedist_file this forms the input to Mie calculations of the
aerosol optical properties. See comment at aerosol_refrac_file.

aerosol_scale_ssa
Scale the aerosol single scattering albedo for all wavelengths and altitudes with
a positive number. If the resulting scaled single scattering albedo is larger than
1 it is set to 1.

aerosol_scale_tau
Scale the aerosol extinction for all wavelengths and altitudes with a positive
number.

aerosol_set_gg
Set the aerosol asymmetry parameter for all wavelengths and altitudes to a
constant value between -1.0 and 1.0.

24 libRadtran

aerosol_set_ssa
Set the aerosol single scattering albedo for all wavelengths and altitudes to a
constant value between 0.0 and 1.0.

aerosol_set_tau
Set the aerosol optical thickness for all wavelengths and altitudes to a constant
value. The optical thickness defined here is the integral from the user-definded
altitude to TOA (top of atmosphere).

aerosol_set_tau550
Set the aerosol optical thickness at 550nm. Other wavelengths are scaled accord-
ingly. Note that this option requires for technical reasons that the wavelength
interval defined by wavelength does contain 550nm. The optical thickness
defined here is the integral from the user-definded altitude to TOA (top of
atmosphere).

aerosol_season
Specify season to get appropriate aerosol profile.

1 Spring-summer profile.

2 Fall-winter profile.

aerosol_sizedist_file
Aerosol size distribution. Two columns are expected: The radius [micron]
and the particle number. Together with aerosol_refrac_index or aerosol_
refrac_file this forms the input to Mie calculations of the aerosol optical
properties. See comment at aerosol_refrac_file.

aerosol_ssa_file
Location of aerosol single scattering albedo file. The file must have two columns.
Column 1 is the altitude in km. The altitude grid must be exactly equal to the
altitude grid specified in the file atmosphere_file. Column 2 is the single
scattering albedo of each layer. At present, the single scattering albedo defined
here is constant with wavelength but it is planned to introduce the wavelength
dependence in the near future. Comments start with #. Empty lines are ignored.

aerosol_tau_file
Location of aerosol optical depth file. The file must have two columns. Column
1 is the altitude in km. The altitude grid must be exactly equal to the altitude
grid specified in the file atmosphere_file. Column 2 is the aerosol optical
depth of each layer. To get wavelength dependence use the parameter aerosol_
angstrom. Comments start with #. Empty lines are ignored.

aerosol_visibility
Visibility in km.

aerosol_vulcan
Aerosol situation above 2 km. Integer.

1 Background aerosols.

Chapter 2: Some useful tools 25

2 Moderate vulcanic aerosols.

3 High vulcanic aerosols.

4 Extreme vulcanic aerosols.

albedo The Lambertian surface albedo, a number between 0.0 and 1.0, constant for all
wavelengths. For wavelength dependent surface albedo use albedo_file. The
default albedo is 0.0.

albedo_file
Location of surface albedo file for wavelength dependent surface albedo. The
file must have two columns. Column 1 is the wavelength, in nm, and column
2 the corresponding Lambertian surface albedo. The wavelength grid may be
freely set. The albedo will be interpolated to the wavelength grid used for the
radiation calculation. Comments start with #. Empty lines are ignored.

angstrom Still supported but obsolete. Replaced by aerosol_angstrom.

altitude Set the bottom level in the model atmosphere provided in atmosphere_file to
be at altitude (km).

altitude 0.73 # Altitude of IFU, Garmisch-Partenkirchen
Be aware, for this to work the atmosphere
file must start at 0 km.

The profiles of pressure, temperature, molecular absorbers, ice and water clouds
are cut at the specified altitude. The aerosol profile is not affected by altitude
but starts right from the model surface. This is a convenient way for the user to
calculate the radiation at other altitudes than sealevel. Note that altitude is
very different from zout where the radiation is calculated at an altitude of zout
over the surface. E.g. to calculate the radiation field 1 km above the surface at
0.73 above sealevel, one would specify ’altitude 0.73’ and ’zout 1.0’.
A second optional argument may be given to altitude as e.g.

altitude 0.73 0.5

Here the bottom level will be at 0.73 km and the vertical resolution of the model
atmosphere will be redistributed to have a spacing between levels specified by
the second number, here 0.5 km. Beaware that specifying a fine vertical spacing
will produce many layers thus increasing the computing time. Also the radiative
transfer equation solvers implemented in Fortran 77 might need to have some
array sizes increased (see ‘src_f/DISORT.MXD’).

atmosphere_file
Location of the atmospheric data file. Must have at least three columns con-
taining the altitude pressure and temperature. Other traces gases are set by
dens_file. Alternatively the first five columns must be specified and option-
ally columns 6 - 9. may be omitted. Missing profiles are filled with zero’s. The
up to nine columns of the file are interpreted as follows (first three columns
must be specified):

1. z(km) Altitude above sea level in km

26 libRadtran

2. p(mb) Pressure in mbar

3. T(K) Temperature in K

4. air_density(cm-3)
Air density in cm-3

5. o3_density(cm-3)
Ozone density in cm-3

6. o2(cm-3)
Oxygen density in cm-3

7. h2o(cm-3)
Water vapour density in cm-3

8. co2(cm-3)
CO2 density in cm-3

9. no2(cm-3)
NO2 density in cm-3

The atmosphere is specified top-down, that is, the top level is the first line in the
file, the bottom (surface) level the last line. All properties refer to model level
z, not to model layer. It is important that the correct units are used, otherwise
unpredictable results are guaranteed. Comments start with #. Empty lines are
ignored. Please note that there is some redundancy: Assuming that air is an
ideal gas, the air density can be calulated from pressure and temperature, dens
= p / kT. uvspec will check if this relation is fulfilled and will issue a warning
if it is not. libRadtran provides the six standard atmospheres by Anderson et
al. (1986):

afglt Tropical

afglms Midlatitude Summer

afglmw Midlatitude Winter

afglss Subarctic Summer

afglsw Subarctic Winter

afglus U.S. Standard

brightness
Convert radiances / irradiances to brightness temperatures.

ch4_mixing_ratio
The mixing ratio of CH4 in ppm (default: 1.6 ppm).

co2_mixing_ratio
The mixing ratio of CO2 in ppm; scale the profile so that the mixing ratio at
the user-defined altitude assumes the specified value.

correlated_k
To calculate integrated shortwave or longwave irradiance, or to simulate satellite
instrument channels, choose between the following correlated-k schemes:

Chapter 2: Some useful tools 27

Kato Kato et al. (1999), shortwave; based on HITRAN 96. Please note
that the bands above 2.5 micron are not very reliable which, how-
ever, has only little impact on integrated shortwave radiation.

Kato2 Kato et al. (1999), shortwave; optimized version (Seiji Kato, per-
sonal communication, 2003); please note that Kato2 only has 148
subbands (that is, calls to the rte_solver) compared to 575 for
Kato which translates to an increase in computational speed by up
to a factor of 4 with only little increase in uncertainty. The ab-
sorption data are based on HITRAN 2000. Please note that the
bands above 2.5 micron are not very reliable which, however, has
only little impact on integrated shortwave radiation.

Kato2.96 Kato et al. (1999), shortwave; optimized version (Seiji Kato, per-
sonal communication, 2003); similar to Kato2 but based on HI-
TRAN96. Please note that the bands above 2.5 micron are not
very reliable which, however, has only little impact on integrated
shortwave radiation.

Fu Fu and Liou (1992/93), shortwave and longwave; fast parameteri-
zation, developed for climate models.

AVHRR_KRATZ
Kratz (1995), AVHRR instrument channels

SBDART Gas absorption parameterization from SBDART (Ricchiazzi et al.,
1998); please see the section on "Spectral resolution".

If correlated k KATO/KATO2/FU/AVHRR KRATZ is specified, the extrater-
restrial flux is taken from internally defined files specific for each parameteri-
zation, not from solar_file. The output is the integrated irradiance for each
band. To get e.g. integrated shortwave irradiance, simply add all bands of the
Kato et al. (1999) or the Fu and Liou (1992/93) parameterization. The five
AVHRR channels are weighted sums of the libRadtran output. Examples how
to integrate the output in the AVHRR_KRATZ case are included in the uvspec
self-test which is initiated with make check.

cox_and_munk_pcl
Pigment concentration for Cox and Munk ocean surface BRDF (in mg/m-3);
at present only available with rte_solver DISORT2. The number of streams
(nstr) is automatically increased to 16 if cox and munk BRDF is switched on,
to avoid numerical problems.

cox_and_munk_sal
Salinity for Cox and Munk ocean surface BRDF (in ppt); at present only avail-
able with rte_solver DISORT2. The number of streams (nstr) is automatically
increased to 16 if cox and munk BRDF is switched on, to avoid numerical prob-
lems.

cox_and_munk_u10
Wind speed for Cox and Munk ocean surface BRDF (in m/s); at present only
available with rte_solver DISORT2. The minimum allowed wind speed is 1 m/s

28 libRadtran

because otherwise the strong specular reflection causes numerical problems. If
a lower value is specified, the wind speed is automatically set to 1m/s. Also,
the number of streams (nstr) is automatically increased to 16 if cox and munk
BRDF is switched on, to avoid numerical problems.

crs_file May be used to specify cross sections of ozone (O3), nitrogendioxide (NO2),
bromine oxide (BRO), OCLO, or HCHO to be used instead of one of those
coming with libRadtran. No temperature dependence may be specified. Use as
follows:

crs_file NO2 ../examples/no2_crs.dat

The NO2 or O3,BRO or OCLO or HCHO must be specified to identify the specie for
which the cross section applies. The cross section file has two columns:

1. wavelength (nm)

2. cross section (cm+2)

data_files_path
The path to the directory where all uvspec internal data files live, e.g. the files
that are in the subdirectories of the ‘data’ directory that comes with the uvspec
distribution. The default is ../data/.

day_of_year
Integer, to correct the calculated radiation quantities for the Sun-Earth distance
for the specified Julian day (1-365). If not given, the Earth-Sun distance is 1 AU
(i.e. equinox distances), that is, no correction is applied to the extraterrestrial
irradiance solar_file.

deltam Turn delta-M scaling on/off. Set to either on or off. Note that for the rte_
solver disort2 delta-M scaling is hardcoded to be always on.

dens_column
Set the total column of a density profile. The column is integrated between the
user-defined altitude and TOA (top of atmosphere). The syntax is

dens_column specie column [unit]

where specie is on of O3, NO2, BRO, OCLO, or HCHO, see also dens_file.
Column is the total column value of the trace gas and the column is in unit
which is optional. The default units are O3 (DU), NO2 (CM 2), BRO (CM 2),
OCLO (CM 2), and HCHO (CM 2). Here DU is Dobson units and CM 2 =cm-
2. In addition DU may be used for NO2 as well, e.g.

dens_column NO2 1.2 DU

dens_file
Specify density profiles (or matrix, see below) of various traces gases to be in-
cluded in the radiative transfer calculation. At the moment ozone (O3), nitro-
gendioxide (NO2), water vapor (H2O), bromine oxide (BRO), OCLO, HCHO,
and carbondioxide (CO2) are included. The various density profiles are idenfied
by their abbrevations given in the parenthesis above.

dens_file O3 ../examples/afglus_o3.dat

The density file has two columns:

Chapter 2: Some useful tools 29

1. z(km) Altitude above sea level in km, must be the same as the altitudes
in atmosphere_file.

2. density of trace gas (cm-3)
The density of the trace gase

To scale the profile to a total column value use dens_column.
For airmass factor calculations it is for some species neccesary to account for the
variation of the profile with sza. This may be accomplished by using dens_file
and feeding it a file containing the following:

1. row 1, column 1: a zero, that is 0.0

2. column 1 below row 1: Altitude above sea level in km, must be the
same as

the altitudes in atmosphere_file.

3. row one after column 1: The solar zenith angle in degrees

4. The rest of the matrix: the density of trace gases as a function of
solar

zenith angle and altitude.

The matrix may only be specified for one specie. It may however be combined
with profiles of other species. For examples see the examples directory. A
density matrix may only be used in connection with the rte_solver sdisort.

f11_mixing_ratio
The mixing ratio of F11 in ppm (default: 0.000268 ppm).

f12_mixing_ratio
The mixing ratio of F12 in ppm (default: 0.000503 ppm).

f22_mixing_ratio
The mixing ratio of F22 in ppm (default: 0.000105 ppm).

filter_function_file
If specified, the calculated spectrum is multiplied with a filter function defined
in ‘filter_function_file’. The file must contain two columns. Column 1
is the wavelength, in nm. Column 2 is the corresponding filter function value.
Comments start with #. Empty lines are ignored. In combination with output
sum or output integrate this option is useful e.g. to calculate weighted irra-
diances or actinic fluxes or to simulate broadband or satellite observations.

fisot Specifies that isotropic illumination is used at top-boundary instead of beam
source. Useful for those who want to calculate the reflectance for a homogeneous
or inhomogeneous atmosphere. The intensity is still set by solar_file.

flexstor Output is in flexstor format. May not be combined with header. Also, does
not currently work when umu and/or phi is specified.

h2o_mixing_ratio
The mixing ratio of H2O in ppm. Scale the profile so that the mixing ratio at
the user-define altitude assumes the specified value.

30 libRadtran

h2o_precip
Precipitable water in kg / m2 (which is approximately 1mm). The water vapor
profile is scaled accordingly. The precipitable water is integrated from the user-
defined altitude to TOA (top of atmosphere).

header Output information on some of the input parameters. May not be combined
with flexstor.

n2o_mixing_ratio
The mixing ratio of N2O in ppm (default: 0.28 ppm).

ic_file Location of file defining ice cloud properties. The file must contain three
columns. Column 1 is the altitude in km, column 2 the ice water content
in grams per qubic meter, and column 3 the effective particle radius in micron.
The ice water content and effectice particle radius must be specified at the
same altitude grid as in atmosphere_file. Note that the definition of cloud
altitudes in ic_file refers to sea level, not to altitude above ground. E.g.,
when altitude is set to 1.63km, and the first cloud level is defined at 3km,
the cloud would start at 1.37km above ground. The optical depth of a layer
is calculated using information from the upper and lower levels defining the
layer. Comments start with #. Empty lines are ignored. An example of an
ice cloud is given in ‘examples/IC.DAT’. Per default, the cloud properties are
interpreted as properties at a given altitude level. If ic_layer is defined, they
are interpreted as layer properties (please see the section about water clouds
for a realistic example how the contents of the ic_file are converted to optical
properties).

ic_files A way to specify ice cloud optical depth, single scattering albedo, and phase
function moments for each layer. The file specified by ic_files has two
columns where column 1 is the altitude in km. The altitudes must be the
same as those specified in the file atmosphere_file. The second column is the
name of a file which defines the optical properties of the level starting at the
given altitude. The files specified in the second column must have the following
format:

Column 1: The wavelength in nm. These wavelengths may be different from
those in solar_file. Optical properties are interpolated to the
requested wavelengths.

Column 2: The extinction coefficient of the layer in units km-1.

Column 3: The single scattering albedo of the layer.

Column 4-(nmom+4):
The moments of the scattering phase function.

Note that if using the rte_solver disort2 it makes good sense to make the
number of moments larger than nstr. For rte_solver disort and rte_solver
polradtran the number of moments included in the calculations will be nstr+1.
Higher order moments will be ignored for these solvers. Please note that the
uppermost line of the ic_files denotes simply the top altitude of the upper-
most layer. The optical properties of this line are consequently ignored. There

Chapter 2: Some useful tools 31

are two options for this line: either an optical property file with zero optical
thickness is specified or "NULL" instead.

ic_fu_tau
Specify if the Fu (1996) optical properties are delta-scaled or not. With ic_
fu_tau scaled delta-scaling is switched on, with ic_fu_tau unscaled it is
switched off. The default is with delta-scaling, as suggested in the paper (equa-
tion 3.8 and description; equations A.2a - A.2c and description). If you define a
cloud only by its microphysical properties (ice water content, effective radius),
delta-scaling should certainly be switched on and you do not need to read
further. If, however, you want to use the Fu (1996) parameterization in combi-
nation with one of ic_set_tau/tau550/gg/ssa or ic_scale_gg/ssa it might
be reasonable to switch delta-scaling off and you should make sure that you
understand the following. Citing from Fu (1996): "For nonspherical particles
in cirrus clouds, it is found that a simple representation of the scattering phase
function through the asymmetry factor is inadequate (Fu and Takano 1994).
As demonstrated in appendix A, the fraction of scattered energy residing in
the forward peak, f, needs to be removed from the scattering parameters to
incorporate the strong forward peak contribution in multiple scattering." Or in
other words, the sharp forward peak is truncated and added to the unscattered
direct radiation. The remaining phase function (excluding the sharp forward
peak) can be safely approximated by a Henyey-Greenstein function. The scal-
ing implies a reduction of the optical thickness, the asymmetry parameter, and
the single scattering albedo. This reduction can be rather severe, e.g. a factor
of about 3 for the optical thickness in the visible spectral range. This implies
seemingly inconsistent optical properties: For idential IWC content and effec-
tive radius, ic_properties yang would give an (unscaled) optical thickness
about three times higher than ic_properties fu. The effect on the radia-
tion field, however, will be comparable, due the consistent scaling of optical
thickness, asymmetry parameter, and single scattering albedo. If you, however,
adjust the optical thickness using e.g. ic_set_tau, the effect on the radiation
field will be completely different because the (unscaled) optical thickness by
Key (2002) has a completely different meaning as the (scaled) optical thickness
by Fu (1996). In such cases it might be reasonable to switch scaling off. This
is a complicated and confusing topic and it is suggested that you play around
a bit with the options, read the Fu (1996) paper, and make heavy use of the
verbose feature.

ic_fu_reff
If ic_fu_reff yang is specified, the Fu (1996/98) parameterization uses the
same definition of the effective radius as the Key et al. (2002) parameterization;
see discussion of ic_properties.

ic_habit Ice crystal habit for the Yang et al. (2000), Key et al. (2002) parameterization,
see also ic_properties yang. May be one of solid-column, hollow-column,
rough-aggregate, rosette-4, rosette-6, or plate. Please note that this parame-
terization is only valid for a restricted size range, depending on the habit (see
table 1 in Key et al. (2002)).

32 libRadtran

ic_ipa_files
A two-column file, defining ice cloud property files (see ic_file) in the first
column and the correspoding weights in the second column. The radiative
transfer calculation is performed independently for each cloud column and the
result is the weighted average of all independent columns. If ic_ipa_files and
wc_ipa_files are both defined, both must have the same columns in the same
order, otherwise uvspec will complain.

ic_layer Specify ice cloud properties for model layers instead of levels (see also ic_file).

ic_properties
Defines how ice water content and effective particle radius are translated to
optical properties. Possible choices are

fu Parameterization by Fu (1996), Fu et al. (1998), see ic file; this
is the default setting. Note that this is a parameterization which
has been created to calculate fluxes but not radiances. Note also
that the optical properties in the solar range provided by Fu (1996)
are delta-scaled properties (that is, the forward peak of the phase
function is truncated and optical thickness, asymmetry parameter,
and single scattering albedo are reduced accordingly). Please see
the detailed discussion in the description of ic_fu_tau! For wave-
lengths up to 4 micron Fu (1996) is used while for wavelengths
larger than 4 micron Fu et al. (1998) is chosen. Please note that
Fu (1996) is based on ray-tracing calculations while Fu et al. (1998)
is a mixture of ray-tracing and Mie calculations (which is required
for the infrared wavelengths where the geometrical assumption does
not hold). Hence, both parameterizations are not fully consistent.
Rather, differences of some % are to be expected in the wavelength
region where both parameterizations overlap. Also, the wavelength
dependence in the solar and infrared parts is treated differently:
In the solar part (Fu, 1996) the optical properties are defined for
wavelength bands - hence they are assumed constant within each
band. In the infrared (Fu et al. 1998) they are defined at cer-
tain wavelengths and linearely interpolated in between. If you use
this option, please see also the discussion of ic_fu_tau and ic_fu_
reff.

yang Parameterization by Yang et al. (2000), Key et al. (2002). This
parameterization can also be used to calculate radiances because it
uses a double-Henyey-Greenstein phase function which better rep-
resents both forward and backward peaks. This parameterization
covers the region from 0.2 to 4.8 micron. It has been complemented
by the parameterization by Yang et al. (2001) which covers the
wavelength region 8 to 13 micron.

mie Use pre-calculated Mie tables; useful for correlated_k; the tables
are expected in data_files_path/correlated k/../
For spectral or pseudo-spectral (correlated_k sbdart) calcula-
tions, a set of pre-calculated tables is also available; the wavelength

Chapter 2: Some useful tools 33

grid points of these data has been carefully selected such that the
extinction cross section, single scattering albedo, and the asymme-
try parameter are accurate to 1% (compared to the fully-resolved
Mie calculation) for all wavelengths between 250nm and 100 mi-
cron. For spectral or pseudo-spectral calculations wc_properties_
interpolate has to be defined explicitely to initiate the interpola-
tion of the optical properties to the internal wavelength grid. Please
note that this option may be extremely memory-comsuming be-
cause for each internal wavelength a full set of Legendre moments of
the phase function is stored (up to several thousands). The Mie ta-
bles are not part of the standard distribution (because of their large
size) but they are freely available from http://www.libradtran.org.
Note that a Mie calculation assumes spherical ice particles, the scat-
tering function of which differs systematically from non-spherical
particles. Hence, ic_properties mie is usually not representative
of natural ice clouds.

filename Read optical properties from specified filename; file format is as
produced by Frank Evans’ cloudprp; for each of the internal (com-
putational) wavelengths, a separate file is expected (this option is
subject to change).

Please note also that, in contrast to spherical particles, there is no unique
definition of effective size for non-spherical particles. In particular, the above
parameterizations use different definitions which, however, differ only by a con-
stant factor. Yang et al. (2000), Key et al. (2002) use the general definition

reff =
3
4

∫
V (h)n(h)dh∫
A(h)n(h)dh

where h is the maximum dimension of an ice crystal, n(h) is the number of
particles with maximum dimension h in the size distribution, and V and A are
the volume and mean projected area of the particles, respectively. The volume
and area are based on the spherical diameter with equivalent volume and the
spherical diameter with equivalent projected area as defined by Yang et al.
(2000). On the other hand, Fu et al. (1996,1998) use hexagonal columns and
use the following definition

reff =
∫

D2Ln(L)dL

2
∫
(DL +

√
3

4
D2)n(L)dL

where D is the width of the ice crystal (that is, the maximum diameter of
the hexagonal area) and L is the length. The integrand in the numerator is
proportional to the volume while that in the denominator is proportional to the
projected area. Evaluating these formulas one finds that, for the same hexagonal
particle, the effective radius would be 3

√
3/4 = 1.299 times larger following

the Yang et al. (2000), Key et al. (2002) definition than the Fu (1996,1998)
definition. As an example, an effective radius of 20µm with ”ic properties fu”
and 1.299 · 20µm = 26µm with ”ic properties yang” would give comparable

34 libRadtran

results for hexagonal columns. To use consistent definitions of the effective
radius in both parameterizations, use ic_fu_reff yang.

ic_properties_interpolate
Interpolate ice cloud optical properties over wavelength; useful for precalculated
optical property files defined with ic_properties. Please note that this option
may be extremely memory-comsuming because for each internal wavelength a
full set of Legendre moments of the phase function is stored (up to several
thousands).

ic_scale_gg
Scale the ice cloud asymmetry factor for all wavelengths and altitudes with
a float between 0.0 and 1.0. If you use this option in combination with the
ice cloud properties by Fu (1996), please make sure that you understand the
explanation of ic_fu_tau.

ic_scale_ssa
Scale the ice cloud single scattering albedo for all wavelengths and altitudes
with a float between 0.0 and 1.0. If you use this option in combination with
the ice cloud properties by Fu (1996), please make sure that you understand
the explanation of ic_fu_tau.

ic_set_gg
Set the ice cloud asymmetry factor for all wavelengths and altitudes to a float
between -1.0 and 1.0. If you use this option in combination with the ice cloud
properties by Fu (1996), please make sure that you understand the explanation
of ic_fu_tau.

ic_set_ssa
Set the ice cloud single scattering albedo for all wavelengths and altitudes to
a value between 0.0 and 1.0. If you use this option in combination with the
ice cloud properties by Fu (1996), please make sure that you understand the
explanation of ic_fu_tau.

ic_set_tau
Set the total ice cloud optical depth to a constant value for all wavelengths.
The optical thickness defined here is the integral from the surface at the user-
defined altitude to TOA (top of atmosphere). This option is useful only for
monochromatic calculations or in wavelength regions where the optical prop-
erties of ice clouds can be considered constant, e.g. the ultraviolet region. If
you use this option in combination with the ice cloud properties by Fu (1996),
please make sure that you understand the explanation of ic_fu_tau.

ic_set_tau550
Set the ice cloud optical thickness at 550nm. Other wavelengths are scaled
accordingly. The optical thickness defined here is the integral from the surface
at the user-defined altitude to TOA (top of atmosphere). Note that this
option requires for technical reasons that the wavelength interval defined by
wavelength does contain 550nm. If you use this option in combination with

Chapter 2: Some useful tools 35

the ice cloud properties by Fu (1996), please make sure that you understand
the explanation of ic_fu_tau.

include Include a file into the uvspec input. Works exactly like the C #include or the
Fortran INCLUDE statements.

molecular_tau_file
Location of molecular absorption optical depth file. Usually, molecular absorp-
tion is calculated from trace gas concentrations provided in atmosphere_file
(scaled with ozone_column, etc. Use this option only if you want to specify the
optical depth directly (e.g. for a model intercomparison) or for a line-by-line
calculation. If a spectral molecular_tau_file is specified, the wavelength grid
defined there is used as internal wavelength grid for the radiative transfer cal-
culation, if not defined otherwise with transmittance_wl_file. molecular_
tau_file can be either of the following three formats:

Monochromatic:
Column 1 is the altitude in km where the altitude grid must be
exactly equal to the altitude grid specified in atmosphere_file.
Column 2 is the absorption optical depth of each layer.

Spectral, ASCII:
The first line contains the level altitudes in decreasing order; the
following lines contain the wavelength [nm] in the first column and
then the absorption optical depths of each layer.

Spectral, netcdf:
netcdf is a common platform independent format; the
description, a library to read and write netcdf in-
cluding some tools to generate netcdf is available at
http://www.unidata.ucar.edu/packages/netcdf/. A molecular_
tau_file must obey certain rules; an example is available at the
libRadtran homepage, ‘UVSPEC.O2A.afglms.cdf’, a line-by-line
spectrum of the oxygen A-Band around 760nm, calculated for the
mid-latitude summer atmosphere by Anderson et al. (1986). The
advantage of netcdf compared to ASCII is that it is much faster
to read, and that the file is a self-contained, including data and a
description of the variables and arrays. It is therefore particularly
useful for line-by-line calculations where usually many spectral
data points are involved.

Comments start with #. Empty lines are ignored.

no_absorption
Switch absorption off.

no_molecular_absorption
Switch all (molecular, aerosol, cloud, and ice cloud) absorption off. Note that
this option does not affect the single scattering albedo; e.g. with an aerosol
optical depth of 1 and a single scattering albedo of 0.7, the scattering optical
depth will still be 0.7, even with no_absorption.

36 libRadtran

no_rayleigh
Switch Rayleigh scattering off.

no_scattering
Switch scattering off.

no2_column_du
Obsolete, use dens_column instead. Set the NO2 column to a given value.
The column is integrated between the user-defined altitude and TOA (top
of atmosphere). The value must be in Dobson units. If value is negative or
no2_column_du is not specified, the NO2 column is not scaled.

no2_column_moleccm-2
Obsolete, use dens_column instead. Set the NO2 column to a given value.
The column is integrated between the user-defined altitude and TOA (top of
atmosphere). The value must be in molecules / cm2. If value is negative or
no2_column_moleccm-2 is not specified, the NO2 column is not scaled.

nscat The order of scattering for the sos radiative transfer equation solver. Default
is 20. May also be used with the sdisort solver. If set to 1 sdisort will
run in single scattering mode while if set in to 2, sdisort runs in full multiple
scattering mode.

nrefrac For the rte_solver sdisort refraction may be included by specifying nrefrac.
If refraction is included also set parameter refraction_file.

0 No refraction, default.

1 Refraction included using fast, but harsh method.

2 Refraction included using slow, but accurate method.

nstr Number of streams used to solve the radiative transfer equation. Default is 6
for fluxes and 16 for radiances.

o2_mixing_ratio
The mixing ratio of O2 in ppm; scale the profile so that the mixing ratio at the
user-defined altitude assumes the specified value.

o3_crs Choose between the following ozone cross sections.

Bass_and_Paur
Bass and Paur ozone cross section.

Molina Molina and Molina (1986) ozone cross section.

Daumont Ozone cross section by Daumont et al. (1992), Malicet et al. (1995).

Molina and Molina is default.

ozone_column
Obsolete, use dens_column instead. Set the ozone column to a given value.
The column is integrated between the user-defined altitude and TOA (top
of atmosphere). The value must be in Dobson units. If value is negative or
ozone_column is not specified, the ozone column is not scaled.

Chapter 2: Some useful tools 37

output Output processing. Choose between the following options:

sum Sum output over wavelength. Useful in combination with the
correlated_k option.

integrate
Integrate output over wavelength. Useful for spectral calculations.

heating The heating rate is calculated and output as a function of altitudes
specified by zout. Note that heating rates are only well-behaved
up to altitudes for which the respective correlated-k options are
valid. E.g. about 60 km for fu and about 80 km for Kato, Kato2
and sbdart. Also note that output is only provided at altitudes
specified by zout. To get heating rate profiles a number of altitudes
must thus be specified. Output is in two columns with column 1
being the altitude and column 2 the heating rate. Heating rates
are output in units of K/day.

none No processing - output spectral information (default).

phi Azimuth output angles (in degrees) in increasing order. The radiance is output
at phi and umu.

phi0 Azimuth angles of the sun (0 to 360 degrees). If phi0 varies as a function of
wavelength use sza_file.

polradtran_aziorder
Order of Fourier azimuth series: 0 is azimuthially symmetric case. Default 0.

polradtran_max_delta_tau
Initial layer thickness for doubling; governs accuracy, 10E-5 should be adequate.
Do not go beyond half the real precision, i.e. 10e-8 for REAL*8. Default 1.e-05.

polradtran_nstokes
Number of Stokes parameters

1 for I (no polarization)

2 for I,Q

3 for I,Q,U

4 for I,Q,U,V

Default is 1.

polradtran_quad_type
Type of quadrature used:

G gaussian

D double gaussian,

L Lobatto

38 libRadtran

E extra-angle(s), this must be used of polradtran is used in combi-
nation with umu. Will internally use Gaussian scheme (G). See also
radtran documentation.

Default G.

polradtran_src_code
Radiation sources included:

0 none

1 solar

2 thermal

3 both

Default 1.

pressure The surface pressure (at the user-defined altitude in hPa. The pressure profile
and density profiles are scaled accordingly.

prndis Specify one or more integers between 1 and 7. Print various disort input and
output in disorts own format. See ‘disort.doc’ for more information. Warning:
Produces a lot of output.

quiet If specfied, a number of informative messages about what options are used and
progress during computations are turned off. Otherwise these messages are
output to stderr. See also verbose.

rayleigh_crs
Choose between the following Rayleigh scattering cross sections.

Bodhaine Bodhaine et al (1999) Rayleigh scattering cross section.

Nicolet Nicolet (1984) Rayleigh scattering cross section.

Bodhaine et al. is default.

rayleigh_depol
Rayleigh depolarization factor; the Rayleigh scattering phase function
is p(mu) = a + b * mu**2 where a = 1.5*(1+depol)/(2+depol) and b =
1.5*(1-depol)/(2+depol). By default the depolarization is calculated using the
expressions from Bodhaine et al. (1999).

rayleigh_tau_file
Location of Rayleigh scattering optical depth file. Usually, the Rayleigh scat-
tering cross section is calculated from the air pressure provided in atmosphere_
file (scaled with pressure). Use this option only if you really want to specify
the optical depth directly (e.g. for a model intercomparison). The optical thick-
ness profile may be either monochromatic or spectral. The format is exactly
the same as for molecular_tau_file.

Chapter 2: Some useful tools 39

reflectivity
Calculate transmission / reflectivity instead of absolute quantities. For irradi-
ances / actinic fluxes the transmission T is defined as

T =
E

E0 cos θ

where E is the irradiance / actinic flux, E0 is the extraterrestrial flux, and θ is
the solar zenith angle. The reflectivity R is defined as

R =
π · L

E0 cos θ

where L is the radiance, E0 is the extraterrestrial flux, and θ is the solar zenith
angle. Obviously, reflectivities do not depend on Sun-Earth distance. Please
note the difference to transmittance.

refractive_index_file
Location of refractive index file. The file must have two columns. Column 1
is the altitude in km. The altitude grid must be exactly equal to the altitude
grid specified in the file atmosphere_file. Column 2 is the refractive index of
each layer. Only has effect if used with the rte_solver sdisort and nrefrac
different from zero. Comments start with #. Empty lines are ignored.

reverse Option for the strong and bold. Reverses the atmospheric input to the radiative
transfer solvers. That is, the atmosphere is turned on the head. Yes, that is
actually useful for some purposes. If you think you need this contact the author.
Otherwise, do not use.

rh_file File that defines a profile of relative humidity. If specified, the water vapour
profile in atmosphere file is over-written. If -1 is specified at a level, the value
from atmosphere file is used.

rpv_file 4 column file, containing the Rahman, Pinty, and Verstraete (RPV) BDRF pa-
rameterization, Rahman et al. (1993). Bidirectional reflectance distribution
functions for a variety of surfaces are given in the paper. This option in only
supported with DISORT 2.0 and MYSTIC. The columns of the input file are
wavelength [nm], rho0, k, and theta. The parameters are interpolated linearely
to the internal wavelength grid. To make sure that the results are reasonable,
specify the RPV data on a wavelength grid similar or equal to that used inter-
nally for the radiative transfer calculation!

rpv_k Constant RPV rho0, see rpv_file. rpv_k overwrites the wavelength-dependent
value defined in rpv_file.

rpv_rho0 Constant RPV rho0, see rpv_file. rpv_rho0 overwrites the wavelength-
dependent value defined in rpv_file.

rpv_theta
Constant RPV theta, see rpv_file. rpv_theta overwrites the wavelength-
dependent value defined in rpv_file.

40 libRadtran

rte_solver
Set the radiative transfer equation solver to be used. Options are

disort The standard plane–parallel disort algorithm by Stamnes et al.
(1988), version 1.3. For documentation see ‘src_f/DISORT.doc’
as well as the papers and the DISORT report at
ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple Scatt/. To
optimize for computational time and memory, please adjust the
parameters in src f/DISORT.MXD for your application and
re-compile.

disort2 Version 2 of disort. For documentation see ‘src_f/DISORT2.doc’
as well as the papers and the DISORT report at
ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple Scatt/.
disort2 has several improvements compared to its ’ancestor’ disort
1.3. Hence we recommend to use disort2 rather than the older
version. To optimize for computational time and memory, please
adjust the parameters in src f/DISORT.MXD for your application
and re-compile.

sdisort Pseudospherical disort as described by Dahlback and Stamnes
(1991). Double precision version. To optimize for compu-
tational time and memory, please adjust the parameters in
src f/DISORT.MXD for your application and re-compile.

spsdisort
Pseudospherical disort as described by Dahlback and Stamnes
(1991). Single precision version, not recommended for large solar
zenith angles. Warning: it is not recommended to use sdisort or
spsdisort for cloudy conditions. With clouds included it may be
numerically unstable and produce wrong results. To optimize for
computational time and memory, please adjust the parameters in
src f/DISORT.MXD for your application and re-compile.

polradtran
The plane-parallel radiative transfer solver of Evans and Stephens
(1991). Includes polarization. Note that polarization effects of
aerosols and clouds are currently not included.

twostr The two–stream radiative transfer solver described by Kylling et
al. (1995).

sos A scalar pseudospherical succesive orders of scattering code. Works
for solar zenith angles smaller than 90 degrees. Can calculate az-
imuthally averaged radiances. Set nscat to specify the order of
scattering.

montecarlo
The MYSTIC code, see http://www.bmayer.de/mystic.html. Note
that MYSTIC is not part of the libRadtran distribution at present.
However, it has been given to some users on a collaborative basis.

Chapter 2: Some useful tools 41

tzs TZS stands for "thermal, zero scattering" and is a very fast ana-
lytical solution for the special case of thermal emission in a non-
scattering atmosphere. Please note that TZS does only radiance
calculations at top of the atmosphere.

sss SSS stands for "solar, single scattering" and is an analytical single
scattering approximation which might be reasonable for a optically
thin atmosphere. Please note that SSS does only radiance calcula-
tions at top of the atmosphere.

null The NULL solver does not solve the radiative transfer equation.
However, it sets up the optical properties, and does the
post-processing; useful if you are either interested in the overhead
time required by a particular model input or if you are simply
interested in the optical properties, as output by verbose.

slit_function_file
If specified, the calculated spectrum is convolved with the function found in
the ‘slit_function_file’. The file must contain two columns. Column 1 is
the wavelength, in nm, and relative to the center wavelength. Column 2 is
the corresponding slit function value. It must be unity at the maximum. The
wavelength steps in the slit function file must be equidistant. Comments start
with #. Empty lines are ignored.

solar_file
Location of file holding the extraterrestrial spectrum. The file must contain two
columns. Column 1 is the wavelength, in nm, and column 2 the correspond-
ing extraterrestrial flux. The user may freely use any units he/she wants on
the extraterrestrial flux. The wavelength grid specified defines the wavelength
resolution at which results are returned. However, the wavelength range is de-
termined by wavelength. solar_file may be omitted for thermal radiation
calculations (source thermal) as well as transmittance and reflectivity
calculations. If omitted, the output resolution equals the internal wavelength
grid which the model choses for the radiative transfer calculation. Comments
start with #. Empty lines are ignored. Note that solar_file is ignored if
correlated_k is specified.

source Solar or thermal source. Set to either solar or thermal.

spline Spline interpolate to wavelengths lambda 0 to lambda 1 in steps of lambda step,
in nm. Specified as e.g.

spline 290. 365. 0.5

Here, the calculated spectrum is interpolated to wavelengths 290., 290.5, 291., ...
, 364.5, 365. For interpolation to arbitrary wavelengths use spline_file. The
specified wavelength interval must be within the one specified by wavelength.

spline_file
Spline interpolate to arbitrary wavelengths, in nm, given as a single column
in file ‘spline_file’. The specified wavelengths must be within the range
specified by wavelength. Comments start with #. Empty lines are ignored.

42 libRadtran

surface_temperature
Surface temperature, used for thermal infrared calculations. If not specified,
the temperature of the lowest atmospheric level is used as surface temperature.

sza The solar zenith angle. If the solar zenith angle varies with wavelength, use
sza_file. The default solar zenith angle is 0.0.

sza_file Location of solar zenith angle file for wavelength dependent solar zenith angle.
The file must have two or three columns. Column 1 is the wavelength, in nm,
and column 2 the corresponding solar zenith angle. Optionally the third column
may contain the corresponding solar azimuth angle. The solar azimuth angle
is only needed when calculating radiances. The wavelength grid may be freely
set. The solar zenith and azimuth angle will be interpolated to the wavelength
grid used for the radiation calculation. Comments start with #. Empty lines
are ignored.

thermal_bands_file
File with the center wavelengths and the wavelength band intervals to be used
for calculations in the thermal range. The following three columns are expected:
center (or reference) wavelength, lower wavelength limit, upper wavelength limit
[nm]. thermal_bands_file defines the wavelength grid for the radiative trans-
fer calculation. The RTE solver is called for each of the wavelengths in the
first column. The atmospheric (scattering, absorption, etc) properties are also
evaluated at these wavelengths. For thermal radiation calculations, the Planck
function is integrated over the wavelength bands defined in the second and third
columns. The result will therefore be a band-integrated irradiance which does
only make sense when the solar_file grid equals the thermal_bands_file
grid.

thermal_bandwidth
Specify a constant bandwidth in cm-1 for thermal calculations. The default is
1 cm-1. This option is ignored if the bands are defined explicitely, like with
thermal_bands_file or correlated_k KATO/FU/AVHRR_KRATZ.

transmittance
Calculate transmittance / reflectance instead of absolute quantities. That is, set
the extraterrestrial irradiance to 1 and do not correct for Sun-Earth distance:

T =
E

E0

where E is the irradiance / actinic flux / radiance and E0 is the extraterrestrial
flux. Please note the difference to reflectivity.

transmittance_wl_file
Location of single column file that sets the wavelength grid used for the internal
transmittance calculations. The wavelengths must be in nm. Do not use this
option unless you know what you are doing. Comments start with #. Empty
lines are ignored.

Chapter 2: Some useful tools 43

umu Cosine of output polar angles in increasing order, starting with negative (down-
ward) values (if any) and on through positive (upward) values. Must not have
any zero values. The azimuthally averaged intensity u0u is output at umu.

verbose If specified abundances of informative messages are output to stderr. To
make use of this information, you may want to write the standard uvspec
output to one file and the diagnostic messages to another. To do so, try
(./uvspec < uvspec.inp > uvspec.out) >& verbose.txt. The irradiances
and radiances will be written to ‘uvspec.out’ while all diagnostic messages go
into ‘verbose.txt’. See also quiet.

wc_cloudcover
Set the fraction of the horizontal sky area which is covered by clouds. When a
cloud cover is specified, the result will be calculated by the independent pixel
approximation (IPA), that is, as weighted average of cloudless sky and overcast
sky, where the cloud properties are taken from wc_file, etc.

wc_file Location of file defining water cloud properties. The file must contain three
columns. Column 1 is the altitude in km, column 2 the liquid water content
in grams per qubic meter, and column 3 the effective droplet radius in micron.
The liquid water content and effectice droplet radius must be specified at the
same altitude grid as in atmosphere_file. Note that the definition of cloud
altitudes in wc_file refers to sea level, not to altitude above ground. E.g.,
when altitude is set to 1.63km, and the first cloud level is defined at 3km, the
cloud would start at 1.37km above ground. The optical depth of a layer is
calculated using information from the upper and lower levels defining the layer.
Comments start with #. Empty lines are ignored. An example of a cloud is
given in ‘examples/WC.DAT’. Per default, the cloud properties are interpreted as
properties at a given altitude level. If wc_layer is defined, they are interpreted
as layer properties (please see the section about water clouds for a realistic
example how the contents of the wc_file are converted to optical properties).

wc_files A way to specify cloud extinction coefficient, single scattering albedo, and scat-
tering phase function for each layer. The file specified by wc_files has two
columns where column 1 is the altitude in km. The altitudes must be the
same as those specified in the file atmosphere_file. The second column is the
name of a file which defines the optical properties of the layer starting at the
given altitude. The files specified in the second column must have the following
format:

Column 1: The wavelength in nm. These wavelengths may be different from
those in solar_file. Optical properties are interpolated to the
requested wavelengths.

Column 2: The extinction coefficient of the layer in units km-1.

Column 3: The single scattering albedo of the layer.

Column 4-(nmom+4):
The moments of the scattering phase function.

44 libRadtran

Note that if using the rte_solver disort2 it makes good sense to make the
number of moments larger than nstr. For rte_solver disort and rte_solver
polradtran the number of moments included in the calculations will be nstr+1.
Higher order moments will be ignored for these solvers. Please note that the
uppermost line of wc_files denotes simply the top altitude of the uppermost
layer. The optical properties of this line are consequently ignored. There are two
options for this line: either an optical property file with zero optical thickness
is specified or "NULL" instead.

wc_ipa_files
A two-column file, defining water cloud property files (see wc_file) in the first
column and the corresponding weights in the second column. The radiative
transfer calculation is performed independently for each cloud column and the
result is the weighted average of all independent columns. If ic_ipa_files and
wc_ipa_files are both defined, both must have the same columns in the same
order, otherwise uvspec will complain.

wc_layer Specify cloud properties for layers instead of levels (see also wc file). If wc layer
is specified, cloud properties are assumed to be constant over the layer.

wc_properties
Define how liquid water content and effective droplet radius are translated to
optical properties. Possible choices are

hu Parameterization by Hu and Stamnes (1993); this is the default
setting. Note that the parameterization is somewhat different for
’correlated k FU’ than for all other cases because in the latter case
the parameterization from the newer (March 2000) Fu and Liou
code is used while otherwise the data are taken from the original
Hu and Stamnes paper. Note that this parameterization has been
developed to calculate irradiances, hence it is less suitable for ra-
diances. This is due to the use of the Henyey-Greenstein phase
function as an approximation of the real Mie phase function.

mie Use pre-calculated Mie tables; useful for correlated_k; the tables
are expected in data_files_path/correlated k/../
For spectral or pseudo-spectral (correlated_k sbdart) calcula-
tions, a set of pre-calculated tables is also available; the wavelength
grid points of these data has been carefully selected such that the
extinction cross section, single scattering albedo, and the asymme-
try parameter are accurate to 1% (compared to the fully-resolved
Mie calculation) for all wavelengths between 250nm and 100 mi-
cron. For spectral or pseudo-spectral calculations wc_properties_
interpolate has to be defined explicitely to initiate the interpola-
tion of the optical properties to the internal wavelength grid. Please
note that this option may be extremely memory-comsuming be-
cause for each internal wavelength a full set of Legendre moments of
the phase function is stored (up to several thousands). The Mie ta-
bles are not part of the standard distribution (because of their large

Chapter 2: Some useful tools 45

size) but they are freely available from http://www.libradtran.org.
This is the correct option to calculate radiances, to be preferred
over the Henyey-Greenstein approach of Hu and Stamnes (1993).

filename Read optical properties from specified filename; file format is as
produced by Frank Evans’ cloudprp; for each of the internal (com-
putational) wavelengths, a separate file is expected. Use only if you
really know what you are doing (this option is subject to change).

wc_properties_interpolate
Interpolate water cloud optical properties over wavelength; useful for precalcu-
lated optical property files defined with wc_properties. Please note that this
option may be extremely memory-comsuming because for each internal wave-
length a full set of Legendre moments of the phase function is stored (up to
several thousands).

wc_scale_gg
Scale the water cloud asymmetry factor for all wavelengths and altitudes with
a float between 0.0 and 1.0.

wc_scale_ssa
Scale the water cloud single scattering albedo for all wavelengths and altitudes
with a float between 0.0 and 1.0.

wc_set_gg
Set the water cloud asymmetry factor for all wavelengths and altitudes to a float
between -1.0 and 1.0. This option is useful only for monochromatic calculations
or in wavelength regions where the optical properties of water clouds can be
considered constant, e.g. the ultraviolet range.

wc_set_ssa
Set the water cloud single scattering albedo for all wavelengths and altitudes to
a float between 0.0 and 1.0. This option is useful only for monochromatic cal-
culations or in wavelength regions where the optical properties of water clouds
can be considered constant, e.g. the ultraviolet range.

wc_set_tau
Set the total water cloud optical thickness to a constant value for all wave-
lengths. The optical thickness defined here is the integral from the surface at
the user-defined altitude to TOA (top of atmosphere). This option is useful
only for monochromatic calculations or in wavelength regions where the opti-
cal properties of water clouds can be considered constant, e.g. the ultraviolet
range.

wc_set_tau550
Set the water cloud optical thickness at 550nm. The optical thickness defined
here is the integral from the surface at the user-defined altitude to TOA
(top of atmosphere). Other wavelengths are scaled accordingly. Note that this
option requires for technical reasons that the wavelength interval defined by
wavelength does contain 550nm.

46 libRadtran

wavelength
Set the wavelength range by specifying first and last wavelength in nm. The
default output wavelength grid is that defined in solar_file, unless spline is
specified. Note that the radiative transfer calculations are done on an internal
grid which can be influenced with transmittance_wl_file or molecular_tau_
file

wavelength_index
Set the wavelengths to be selected. To be used together with predefined wave-
length grids, such as transmittance_wl_file molecular_tau_file and par-
ticularly useful in combination with the correlated_k option where often only
a specified number of wavelength bands is required. E.g., in combination with
correlated_k AVHRR_KRATZ, wavelength_index 15 15 will select wavelength
index 15 which corresponds to channel 4, or wavelength_index 10 14 will se-
lect those bands required for channel 3. Indices start from 1.

zout Output altitudes in km. One or more altitudes may be specified in increasing
magnitude. Output altitudes must be within the range defined in the
atmosphere_file. Note that zout does not restructure the atmosphere
model. Hence, if you specify zout 0.730 and have your atmosphere model
in atmosphere_file go all the way down to sea level, i.e. 0.0km., output is
presented at 0.730km and calculations performed with an atmosphere between
0.0 and 0.730 km (and above of course). If you want calculations done for e.g.
an elevated site you have to restructure the atmosphere model and make sure
it stops at the appropriate altitude. This you may either due by editing the
atmosphere file or by using altitude. Note that for rte_solver polradtran
the atmosphere file must contain the altitudes specified by zout.

2.2 mie

mie performes Mie scattering calculations for a specified wavelength interval. It reads
input from standard input, and outputs to standard output. It is normally invoked in the
following way:

mie < input_file > output_file

The format of the input and output files are described below. Several realistic examples of
input files are subsequently given.

Warning: Please note the error checking on input variables is very scarce at the moment.
Hence, if you provide erroneous input, the outcome is unpredictable.

2.2.1 The mie input file

The mie input file consists of single line entries, each making up a complete input to
the mie program. First on the line comes the parameter name, followed by one or more
parameter values. The parameter name and the parameter values are seperated by white
space.

Filenames are entered without any surrounding single or double quotes.

Chapter 2: Some useful tools 47

Comments are introduced by a #. Blank lines are ignored.

The various input parameters are described in detail below.

mie_program
Specify which Mie program to use:

BH The Mie scattering program by Bohren and Hoffmann,
ftp://astro.princeton.edu/draine/scat/bhmie/

MIEV0 The Mie scattering program by W. Wiscombe. For documentation
see src f/MIEV.doc and the NCAR Mie report at
ftp://climate.gsfc.nasa.gov/pub/wiscombe/Single Scatt/.

mimcut (positive) value below which imaginary refractive index is regarded as zero
(computation proceeds faster for zero imaginary index). Only used by mie_
program MIEV0.

nmom Number of moments of the phase function to be calculated (default: 0). Only
possible with mie_program MIEV0.

r_mean The radius [micron] of the particle to calculate single scattering properties of.
Used together with the wavelength information to calculate the Mie size pa-
rameter.

refrac Specify which refractive index to use. The following options are implemented:

ice The complex refractive index is taken from the REFICE function
of W. Wiscombe.

water The complex refractive index is taken from the REFWAT function
of W. Wiscombe.

user <re> <im>
A user defined refractive index. re and im are the real and imagi-
nary parts (both positive numbers).

file <filename>
Read refractive index from a three-column file containing wave-
length [nm], and the real and imaginary parts of the refractive in-
dex (both positive numbers). The Mie calculation is done for each
wavelength defined here.

size_distribution_file
Specify a two column file, r [micron], n(r), which describes a size distribution of
droplets. The Mie calculation is repeated for each value of r found in the size
distribution file, and the final result is a weighted average of these values. The
user himself therefore has to choose a set of r’s suited for his specific purpose.

temperature
Ambient temperature, used to calculate the refractive indices of water and ice.
Temperature dependence is only considered above 10 micron (water) and 167
micron (ice), respectively. Default: 300K.

48 libRadtran

wavelength
Sets the wavelength range, in nm. Specify first wavelength and last wavelength.
The wavelength step is specified by wavelength_step. Ignored if refrac file
is specified.

wavelength_step
The wavelength step, in nm. Ignored if refrac file is specified.

2.2.2 The mie output

The mie output is currently fixed. We hope to make it user controllable in the future.

mie outputs one line to standard output (stdout) for each wavelength. The format of
the output line is

lambda refrac_real refrac_img qext omega gg spike pmom(0:nmom)

Here

lambda Wavelength, in nm.

refrac_real
The real part of the refractive index.

refrac_img
The imaginary part of the refractive index.

qext The extinction efficiency factor if r_mean was specified or the extinction coef-
ficient [km-1] per unit concentration [cm3/m3] if a size_distribution_file
was specified. If the medium is liquid water, 1 cm3/m3 equals a liquid water
contend of 1g/m3 because the density of water is close to 1 g/cm3. For ice
and other substances, the density has to be considered (0.917 g/cm3 for ice at
273K).

omega The single scattering albedo.

gg The asymmetry parameter.

spike To quote from Wiscombe’s ‘MIEV0.doc’:
(REAL) magnitude of the smallest denominator of either Mie co-
efficient (a-sub-n or b-sub-n), taken over all terms in the Mie series
past N = size parameter XX. Values of SPIKE below about 0.3 sig-
nify a ripple spike, since these spikes are produced by abnormally
small denominators in the Mie coefficients (normal denominators
are of order unity or higher). Defaults to 1.0 when not on a spike.
Does not identify all resonances (we are still working on that).

Meaningless if a size_distribution_file was specified.

pmom(0:nmom)
The moments of the phase function. The phase function p(µ) is

p(µ) =
∞∑

m=0

(2m + 1) · km · Pm(µ)

where km is the m’th moment and Pm(µ) is the m’th Legendre polynomial.

Chapter 2: Some useful tools 49

2.2.3 Examples of mie input files

An example of a complete input file is

mie_program MIEV0
refrac ice
mimcut 0.0000000001
r_mean 200.
wavelength 280. 5000.
wavelength_step 5.

2.3 integrate

integrate calculates the integral between limits x min and x max by interpolating the
data points (x[i], y[i]) with natural cubic splines or linear interpolation. x min and x max
are the minimum and maximum values of the first column in the input file. The x-values
in the first column must be in ascending order.

The different options to integrate are displayed when executing:

integrate -h

2.4 spline

spline interpolates discrete data points using natural cubic splines or linear interpola-
tion. The x-values in the first column must be in ascending order.

The different options to spline are displayed when executing:

spline -h

2.5 conv

conv convolutes a spectrum with a given filter function.

The different options to conv are displayed when executing:

conv -h

2.6 addlevel

addlevel is a simple shell script to add a level to one of the existing standard profiles.

The different options to addlevel are displayed when executing:

addlevel -h

2.7 snowalbedo

snowalbedo calculate the diffuse and direct albedo of snow as formulated by Wiscombe
and Warren (1980).

The different options to snowalbedo are displayed when executing:

50 libRadtran

snowalbedo -h

2.8 cldprp

cldprp calculates wavelength-dependent cloud properties using one of several parame-
terizations.

The different options to cldprp are displayed when executing:

cldprp -h

2.9 Geno3tab

The Perl script Gen_o3_tab.pl is used to generate a matrix of ozone values for solar
zenith angle versus a chosen ratio of global irradiance at different wavelengths. The table is
read by the C program read_o3_tab which, for a solar zenith angle and a measured ratio,
returns the overhead ozone column. All available options are displayed when executing

perl Gen_o3_tab.pl --help

and

read_o3_tab -h

The following different types of tables may be generated.

2.9.1 Simple wavelength ratios with Gen o3 tab

The simplest type of table is made of ratios of the global irradiance at two single wave-
lengths. This is the type of table described by Stamnes et al. (1991). This type of table
is typically used to analyse measurements of the global irradiance from spectroradiometers.
It is generated by the following command (\ is line continuation character)

perl Gen_o3_tab.pl --slitfunction slitfncfile --lower_lambda 305. \
--upper_lambda 340. --file table.dat

Here ‘slitfncfile’ is the name of the slit function file. It is a two column file where
the first column is the wavelength (nm, in relative units) and the second column holds the
slit function. The slit function must be normalized to unity at the center wavelength.

The generated table ‘table.dat’ is read by read_o3_tab for a measured ratio, -r 10.0,
and solar zenith angle, -s 30.0, corresponding to the modelled ratio in the table

read_o3_tab -r 10.0 -s 30.0 table.dat

2.9.2 Bandpassed wavelength ratios with Gen o3 tab

Instead of using single wavelengths it may be of advantage to use ratios of irradiances
covering a certain wavelength range and weighted with a bandpass function. This approach
may reduce problems due to changes in cloud cover and experimental uncertainties. This
approach is also suitable to calculate ozone columns from multichannel, moderate bandwidth
filter instruments, Dahlback (1996). Such tables are generated by

Chapter 2: Some useful tools 51

perl Gen_o3_tab.pl --slitfunction slitfncfile --lower_lambda 305.0 \
--upper_lambda 320.0 --file table.dat \
--bandpasslower bplow.dat --bandpassupper bpupp.dat

Here ‘bplow.dat’ and ‘bpupp.dat’ are the bandpass function of the lower and upper
wavelength region respectively. The bandpass files have two columns. The first column is
the wavelength in nm and relative units to –lower lambda and –upper lambda. If absolute
units are specified as for filter instruments, use the –absolute option. The second column
is the bandpass function.

The tables are read in the same way as the simple wavelength ratio tables.

2.10 Genwctab

The Perl script Gen_wc_tab.pl is used to generate a matrix of cloud optical depth for
solar zenith angle versus a chosen global irradiance at a selected wavelength. The wavelength
should be chosen such that it is not affected by ozone, e.g. 380 nm. The table is read by the
C program read_o3_tab which, for a solar zenith angle and a measured irradiance, returns
the overhead cloud optical depth. All available options are displayed when executing

perl Gen_wc_tab.pl --help

and

read_o3_tab -h

The following different types of tables may be generated.

2.10.1 Simple wavelength ratios with Gen wc tab

The simplest type of table is made of the global irradiance at a single wavelength. This
is the type of table described by Stamnes et al. (1991). This type of table is typically used
to analyse measurements of the global irradiance from spectroradiometers. It is generated
by the following command (\ is line continuation character)

perl Gen_wc_tab.pl --slitfunction slitfncfile --lambda 380. \
--file table.dat

Here ‘slitfncfile’ is the name of the slit function file. It is a two column file where
the first column is the wavelength (nm, in relative units) and the second column holds the
slit function. The slit function must be normalized to unity at the center wavelength.

The generated table ‘table.dat’ is read by read_o3_tab for a measured global irradi-
ance, -r 10.0, and solar zenith angle, -s 30.0, corresponding to the modelled ratio in the
table. The table must be corrected for the Earth–Sun distance for the day of the measure-
ment. This is achieved by specifying -d 170, where 170 is the day number. The table is
generated for day 1.

read_o3_tab -r 10.0 -s 30.0 -d 170 table.dat

52 libRadtran

2.10.2 Bandpassed wavelength ratios with Gen wc tab

Instead of using a single wavelength it may be of advantage to use irradiances covering a
certain wavelength range and weighted with a bandpass function. This approach may reduce
problems due to changes in cloud cover and experimental uncertainties. This approach is
also suitable to calculate cloud optical depth from multichannel, moderate bandwidth filter
instruments, Dahlback (1996). Such tables are generated by

perl Gen_wc_tab.pl --slitfunction slitfncfile --lambda 380.0 \
--file table.dat --bandpass bp.dat

Here ‘bp.dat’ is the bandpass function of the wavelength region. The bandpass file have
two columns. The first column is the wavelength in nm and relative units to –lambda. If
absolute units are specified as for filter instruments, use the –absolute option. The second
column is the bandpass function.

The tables are read in the same way as the simple wavelength irradiance tables.

Chapter 3: C functions in libRadtran 53

3 C functions in libRadtran

3.1 ASCII file access

3.1.1 Usage of the ASCII library

In order to use the functions provided by the ascii library, #include <ascii.h> in your
source code and link with libRadtran c.a.

Example: Example for a source file:

...
#include "../src_c/ascii.h"
...

Linking of the executable, using the GNU compiler gcc:

gcc -o test test.c -lRadtran_c -L../lib

3.1.2 General comments to the ASCII library

The ASCII library provides functions for parsing ASCII files containing arrays of data.
An ASCII file is read line by line. Each line is split into fields; a field is an arbitrary combi-
nation of characters which does neither contain the line separator (’CARRIAGE RETURN’)
nor the field separator (’SPACE’).

In detail:

Lines are separated by ’CARRIAGE RETURN’.
Tokens (or columns) are separated by one or more ’SPACE’s.
Empty lines are simply ignored.
\% and # are comment symbols; text between a comment symbol and the next line
separator is ignored
A comment symbol which is not at the beginning of a line is only recognized after a
field separator, but not within a field
The number of fields may differ from line to line.

A simple example for an ASCII file, which would be recognized as a valid one-column
or two-column ASCII file:

% This is an example for the input ASCII file for sdose,
% the time integration program
11.0 13.0 % the two hours around noon

54 libRadtran

10.0 14.0
9.0 15.0

total dose
-1.0 24.0 % integrate over maximum available time interval

the following line shows, that an extra column does not matter
2 3.4 17

For most purposes, ASCII file2double and ASCII free double provide a convenient way
for parsing files. Example:

#include <stdio.h>
#include <ascii.h>

int main(int argc, char ** argv)
{
int rows=0, max_columns=0, min_columns=0;
int i=0, status=0;
double **value=NULL;

status = ASCII_file2double ("test.dat",
&rows,

&max_columns,
&min_columns,
&value);

for (i=0; i<rows; i++) {
... do something for each row of the matrix

}

ASCII_free_double (value, rows);

return 0;
}

For special purposes (ASCII files with 1,2,3, or 5 columns) there are additionally func-
tions read 1c file, ... which facilitate the access even more.

3.1.3 ASCII Library functions

3.1.3.1 Function ASCII checkfile

Functionint ASCII checkfile (char *filename, int *rows, int
*min_columns, int *max_columns, int *max_length)

Chapter 3: C functions in libRadtran 55

Description:
Check an ASCII file: count rows, minimum number of columns, maximum
number of columns and the maximum length of a string; empty rows and
characters after one of the comment symbols (either ASCII COMMENT 1 or
ASCII COMMENT 2) are ignored.

Parameters:
char *filename

name of the file which should be checked

int *rows number of rows found

int *min_columns
minimum number of columns, set by function

int *max_columns
maximum number of columns, set by function

int *max_length
maximum length of a field, set by function

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.2 Function ASCII calloc string

Functionint ASCII calloc string (char ****string, int rows, int
columns, int length)

Description:
Allocate memory for a two-dimensional array of strings.

Parameters:
char ****string

Pointer to a two-dimensional array of strings; memory for string is
allocated automatically

int rows Number of rows, specified by the caller

int columns
Number of columns, specified by the caller

int length
Maximum length of a string, specified by the caller

56 libRadtran

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.3 Function ASCII free string

Functionint ASCII free string (char ***string, int rows, int columns)

Description:
Free memory, which has been allocated with ASCII calloc string.

Parameters:

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.4 Function ASCII calloc int

Functionint ASCII calloc int (int ***value, int rows, int columns)

Description:
Allocate memory for a two-dimensional array of int.

Parameters:

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

Chapter 3: C functions in libRadtran 57

3.1.3.5 Function ASCII calloc double

Functionint ASCII calloc double (double ***value, int rows, int
columns)

Description:
Allocate memory for a two-dimensional array of double.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.6 Function ASCII calloc double 3D

Functionint ASCII calloc double 3D (double ****value, int rows, int
columns, int length)

Description:
Allocate memory for a three-dimensional array of double.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.7 Function ASCII calloc double 3D arylen

Functionint ASCII calloc double 3D arylen (double ****value, int
rows, int columns, int *length)

Description:
Allocate memory for a three-dimensional array of double.

Parameters:
Return value:

0 if o.k., <0 if error

58 libRadtran

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.8 Function ASCII calloc double 3D arylen restricted

Functionint ASCII calloc double 3D arylen restricted (double
****value, int rows, int columns, int columns_lower, int
columns_upper, int *length)

Description:
Allocate memory for a three-dimensional array of double. Only a restricted
range (marked by columns lower and columns upper) is actually allocated; the
function is very special - maybe not of much general use.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.9 Function ASCII calloc float 3D

Functionint ASCII calloc float 3D (float ****value, int rows, int
columns, int length)

Description:
Allocate memory for a three-dimensional array of float.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

Chapter 3: C functions in libRadtran 59

3.1.3.10 Function ASCII calloc float 4D

Functionint ASCII calloc float 4D (float *****value, int rows, int
columns, int length, int fourth_dimension)

Description:
Allocate memory for a four-dimensional array of float.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.11 Function ASCII calloc double 4D

Functionint ASCII calloc double 4D (double *****value, int rows, int
columns, int length, int fourth_dimension)

Description:
Allocate memory for a four-dimensional array of double.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.12 Function ASCII calloc float 5D

Functionint ASCII calloc float 5D (float ******value, int rows, int
columns, int length, int fourth_dimension, int fifth_dimension)

Description:
Allocate memory for a five-dimensional array of float.

Parameters:
Return value:

0 if o.k., <0 if error

60 libRadtran

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.13 Function ASCII calloc float

Functionint ASCII calloc float (float ***value, int rows, int columns)

Description:
Allocate memory for a two-dimensional array of float.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.14 Function ASCII free int

Functionint ASCII free int (int **value, int rows)

Description:
Free memory, which has been allocated with ASCII calloc int.

Parameters:
int **value

Two-dimensional array of int

int rows Number of rows, specified by caller

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

Chapter 3: C functions in libRadtran 61

3.1.3.15 Function ASCII free double

Functionint ASCII free double (double **value, int rows)

Description:
Free memory, which has been allocated with ASCII calloc double.

Parameters:

double **value
Two-dimensional array of double

int rows Number of rows, specified by caller

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.16 Function ASCII free float

Functionint ASCII free float (float **value, int rows)

Description:
Free memory, which has been allocated with ASCII calloc float.

Parameters:

float **value
Two-dimensional array of float

int rows Number of rows, specified by caller

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

62 libRadtran

3.1.3.17 Function ASCII free double 3D

Functionint ASCII free double 3D(double ***value, int rows, int
columns)

Description:
Free memory, which has been allocated with ASCII calloc double 3D.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.18 Function ASCII free float 3D

Functionint ASCII free float 3D(float ***value, int rows, int columns)

Description:
Free memory, which has been allocated with ASCII calloc float 3D.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.19 Function ASCII free float 4D

Functionint ASCII free float 4D(float ****value, int rows, int
columns, int length)

Description:
Free memory, which has been allocated with ASCII calloc float 4D.

Parameters:
Return value:

0 if o.k., <0 if error

Chapter 3: C functions in libRadtran 63

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.20 Function ASCII free double 4D

Functionint ASCII free double 4D(double ****value, int rows, int
columns, int length)

Description:
Free memory, which has been allocated with ASCII calloc double 4D.

Parameters:

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.1.3.21 Function ASCII free float 5D

Functionint ASCII free float 5D(float *****value, int rows, int
columns, int length, int fourth_dimension)

Description:
Free memory, which has been allocated with ASCII calloc float 5D.

Parameters:

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

64 libRadtran

3.1.3.22 Function ASCII readfile

Functionint ASCII readfile (char *filename, char ***array)

Description:
Read an ASCII file into a two-dimensional array of strings; before calling
ASCII readfile, the file must be parsed with ASCII checkfile, and memory must
be allocated with ASCII calloc string.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.23 Function ASCII string2double

Functionint ASCII string2double (double **value, char *** string, int
rows, int columns)

Description:
Convert a two-dimensional array of strings to a two-dimensional array of double.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.24 Function ASCII string2float

Functionint ASCII string2float (float **value, char *** string, int
rows, int columns)

Description:
Convert a two-dimensional array of strings to a two-dimensional array of float.

Parameters:

Chapter 3: C functions in libRadtran 65

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.25 Function ASCII file2double

Functionint ASCII file2double (char *filename, int *rows, int
*max_columns, int *min_columns, double ***value)

Description:
Parse an ASCII file and store data in a twodimensional array
value[row][column]; memory allocation for value is done automatically. rows
is the number of (not empty) rows of the file, max columns is the maximal
number of columns of the file and min columns is the minimal number of
columns of all (not empty) lines; the dimension of the array value is rows *
max columns; strings that cannot be interpreted as floating point number
are converted to 0; rows with less than max columns columns are filled up
with NAN; the allocated memory can be freed with ASCII free double (value,
rows).

Parameters:
char *filename

Name of the file which should be parsed

int *rows Number of rows, set by function

int *min_columns
Minimum number of columns, set by function

int *max_columns
Maximum number of columns, set by function

double ***value
Pointer to a two-dimensional array of double, value [0 ... rows-1][0
... max columns-1]. Memory is allocated automatically.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

66 libRadtran

3.1.3.26 Function ASCII file2float

Functionint ASCII file2float (char *filename, int *rows, int
*max_columns, int *min_columns, float ***value)

Description:
Read an ASCII file and store data in a twodimensional array value[row][column];
memory allocation for value is done automatically. rows is the number of (not
empty) rows of the file, max columns is the maximal number of columns of the
file and min columns is the minimal number of columns of all (not empty) lines;
the dimension of the array value is rows * max columns; strings that cannot
be interpreted as floating point number are converted to 0; rows with less than
max columns columns are filled up with NAN; the allocated memory can be
freed with ASCII free float (value, rows).

Parameters:
char *filename

Name of the file which should be parsed

int *rows Number of rows, set by function

int *min_columns
Minimum number of columns, set by function

int *max_columns
Maximum number of columns, set by function

float ***value
Pointer to a two-dimensional array of float, value [0 ... rows-1][0 ...
max columns-1]. Memory is allocated automatically.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.27 Function ASCII column

Functiondouble *ASCII column (double **value, int rows, int column)

Description:
Extract a specified column from a two-dimensional array of double.

Parameters:
Return value:

Pointer to the column.

Chapter 3: C functions in libRadtran 67

Example:

Files: none

Known bugs:
none

Author:

3.1.3.28 Function ASCII column float

Functionfloat *ASCII column float (float **value, int rows, int
column)

Description:
Extract a specified column from a two-dimensional array of float.

Parameters:

Return value:
Pointer to the column.

Example:

Files: none

Known bugs:
none

Author:

3.1.3.29 Function ASCII row

Functiondouble *ASCII row (double **value, int columns, int row)

Description:
Extract a specified row from a two-dimensional array of double.

Parameters:

Return value:
Pointer to the row.

Example:

Files: none

Known bugs:
none

Author:

68 libRadtran

3.1.3.30 Function read 1c file

Functionint read 1c file (char *filename, double **first, int *n)

Description:
Read an ASCII file with (at least) 1 column. Only the first column is returned
in array first; n is the number of values returned. Memory allocation for first
is done automatically; field can be freed with a simple free().

Parameters:

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.31 Function read 1c file float

Functionint read 1c file float (char *filename, float **first, int *n)

Description:
Read an ASCII file with (at least) 1 column. Only the first column is returned
in array first; n is the number of values returned. Memory allocation for first
is done automatically; field can be freed with a simple free().

Parameters:

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.32 Function read 2c file

Functionint read 2c file (char *filename, double **first, double
**second, int *n)

Chapter 3: C functions in libRadtran 69

Description:
Read an ASCII file with (at least) 2 columns. Only the first two column are
returned in arrays first and second. n is the number of values returned. Memory
allocation for first and second is done automatically; fields can be freed with a
simple free().

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.33 Function read 2c file float

Functionint read 2c file float (char *filename, float **first, float
**second, int *n)

Description:
Read an ASCII file with (at least) 2 columns to a float array. Only the first
two column are returned in arrays first and second. n is the number of values
returned. Memory allocation for first and second is done automatically; fields
can be freed with a simple free().

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.34 Function read 3c file

Functionint read 3c file (char *filename, double **first, double
**second, double **third, int *n)

Description:
Read an ASCII file with (at least) 3 columns. Only the first three columns are
returned in arrays first, second, and third. n is the number of values returned.
Memory allocation for first, second, and third is done automatically; fields can
be freed with a simple free().

70 libRadtran

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.35 Function read 3c file float

Functionint read 3c file float (char *filename, float **first, float
**second, float **third, int *n)

Description:
Read an ASCII file with (at least) 3 columns to a float array. Only the first three
columns are returned in arrays first, second, and third. n is the number of values
returned. Memory allocation for first, second, and third is done automatically;
fields can be freed with a simple free().

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.36 Function read 4c file

Functionint read 4c file (char *filename, double **first, double
**second, double **third, double **fourth, int *n)

Description:
Read an ASCII file with (at least) 4 columns. Only the first four columns
are returned in arrays first, second, third, and fourth. n is the number of
values returned. Memory allocation for first, second, third, and fourth is done
automatically; fields can be freed with a simple free().

Parameters:
Return value:

0 if o.k., <0 if error

Chapter 3: C functions in libRadtran 71

Example:

Files: none

Known bugs:
none

Author:

3.1.3.37 Function read 4c file float

Functionint read 4c file float (char *filename, float **first, float
**second, float **third, float **fourth, int *n)

Description:
Read an ASCII file with (at least) 4 columns to a float array. Only the first four
columns are returned in arrays first, second, third, and fourth. n is the number
of values returned. Memory allocation for first, second, third, and fourth is
done automatically; fields can be freed with a simple free().

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.38 Function read 5c file

Functionint read 5c file (char *filename, double **first, double
**second, double **third, double **fourth, double **fifth, int *n)

Description:
Read an ASCII file with (at least) 5 columns. Only the first five columns are
returned in arrays first, second, third, fourth and fifth. n is the number of
values returned. Memory allocation for first, second, third, fourth, and fifth is
done automatically; fields can be freed with a simple free().

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

72 libRadtran

3.1.3.39 Function read 6c file

Functionint read 6c file (char *filename, double **first, double
**second, double **third, double **fourth, double **fifth, double
**sixth, int *n)

Description:
Read an ASCII file with (at least) 6 columns. Only the first six columns are
returned in arrays first, second, third, fourth, fifth, and sixth. n is the number of
values returned. Memory allocation for the result arrays is done automatically;
fields can be freed with a simple free().

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.40 Function substr

Functionchar *substr(char *buffer, char *string, int start, int length)

Description:
Create substring starting at position start with length length. Result is written
to buffer (which MUST be allocated before).

Parameters:
Return value:

Pointer to the substring.

Example:

Files: none

Known bugs:
none

Author:

3.1.3.41 Function ASCII parse

Functionint ASCII parse (char *string, char *separator, char ***array,
int *number)

Chapter 3: C functions in libRadtran 73

Description:
Parse string to an array of single words. Memory for an array of string pointers
is allocated automatically. array[i] points to the address of word #i in string!
Word separator is specified in separator. Number of words is returned in num-
ber. Characters following the comment character are ignored.

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.1.3.42 Function ASCII parsestring

Functionint ASCII parsestring (char *string, char ***array, int
*number)

Description:
For compatibility reasons: ASCII parsestring is just a call to ASCII parse()
with field separator set to " \t\v\f\r\n"

Parameters:
Return value:

0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2 Numeric functions

3.2.1 Usage of the Numeric Library

In order to use the functions provided by the numeric library, #include <numeric.h> in
your source code and link with libRadtran c.a.

Example: Example for a source file:

...

74 libRadtran

#include "../src_c/numeric.h"
...

Linking of the executable, using the GNU compiler gcc:

gcc -o test test.c -lRadtran_c -L../lib

3.2.2 General comments to the Numeric Library

The numeric library provides various numeric functions. The source code is split up into
the following source files:

cnv.c Data convolution.

equation.c Solve systems of linear equations.

function.c Miscellaneous functions.

integrat.c Numerical integration.

linear.c Linear interpolation.

regress.c Linear regression and related things.

spl.c Spline interpolation and approximation.

3.2.3 Numeric Library functions

3.2.3.1 Function convolute

Functionint convolute (double *x_spec, double *y_spec, int spec_num,
double *x_conv, double *y_conv, int conv_num, double **x_spec_conv,
double **y_spec_conv, int *spec_conv_num)

Description:
Convolute a dataset (x spec[i], y spec[i]) with another data set (x conv[i],
y conv[i]). The data sets must obey the following principles: (1) Both datasets
must be defined in equidistant steps; (2) the step width must be the same
for both datasets; and (3) 0 must be a point of the grid of the convolution
function, x conv[]. The results is stored in (x spec conv[i], y spec conv[i]),
i=0...spec conv num, the memory of which is allocated automatically.

Parameters:
double *x_spec

x values of the data points, i=0...spec num-1

double *y_spec
y values of the data points, i=0...spec num-1

Chapter 3: C functions in libRadtran 75

int spec_num
number of data points

double *x_conv
x values of the convolution function, i=0...conv num-1

double *y_conv
y values of the convolution function, i=0...conv num-1

int conv_num
number of convolution function data points

double **x_spec_conv
x values of the convoluted spectrum

double **y_spec_conv
y values of the convoluted spectrum

int spec_conv_num
number of result data points

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.2 Function int convolute

Functionint int convolute (double *x_spc, double *y_spc, int spc_num,
double *x_conv, double *y_conv, int conv_num, double **y_spec_conv)

Description:
Convolute a dataset (x spc[i], y spc[i]) with another data set (x conv[i],
y conv[i]). In contrast to the conv() function provided by this library, the
dataset to be convoluted and the convolution function may be defined on
different grids. While x spc[] may be an arbitrary grid, x conv[] must obey the
following principles: (1) The spacing must be equidistant; and (2) 0 must be
part of the grid. During the convolution process, the convolution function is
interpolated to the grid defined by x conv[]. It is therefore necessary to specify
a fine enough grid x conv[], even if it only describes, e.g., a triangle. The
output is stored in y spec conv[], which is evaluated at the original data points
x spc[].

Parameters:
double *x_spc

x values of the data points, i=0...spc num-1

76 libRadtran

double *y_spc
y values of the data points, i=0...spc num-1

int spc_num
number of data points

double *x_conv
x values of the convolution function, i=0...conv num-1

double *y_conv
y values of the convolution function, i=0...conv num-1

int conv_num
number of convolution function data points

double **y_spec_conv
convoluted spectrum on the original grid x spc, i=0...spc num-1

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.3 Function solve gauss

Functionint solve gauss (double **A, double *b, int n, double **res)

Description:
Solve a system of n linear equations, A*x = b, using the Gauss algorithm The
pivot element is determined using ’relative column maximum strategy’. For a
description of the algorithm see H.R.Schwarz: "Numerische Mathematik", pg.
21. Memory for the result vector res is allocated automatically.

Parameters:
double **A

Matrix[n x n] (see above).

double *b Vector[n] (see above).

double n Number of equations.

double **res
Pointer to the result vector[n]; if no unique solution exists, *res will
be set to NULL.

Return value:
0 if o.k., <0 if no unique solution.

Example:

Chapter 3: C functions in libRadtran 77

Files: none

Known bugs:
none

Author:

3.2.3.4 Function solve five

Functionint solve five (double **A, double *b, int n, double **res)

Description:
Solve a system of n linear equations, A*x = b, where A is a five-diagonal
matrix; for details see Engeln-Muellges, pg.95ff. Memory for the result vector
is allocated automatically. If possible, solve five ms() should be preferred to
solve five(), because much less memory is required by the latter.

Parameters:
double **A

Matrix[n x n] (see above).

double *b Vector[n] (see above).

double n Number of equations.

double **res
Pointer to the result vector[n]; if no unique solution exists, *res will
be set to NULL.

Return value:
0 if o.k., <0 if no unique solution.

Example:

Files: none

Known bugs:
none

Author:

3.2.3.5 Function solve five ms

Functionint solve five ms (double **A, double *b, int n, double **res)

Description:
Same function as solve five(), but much more memory efficient on the cost of
some user-friendlyness. In contrast to solve five(), A is defined as a n*5-matrix,
rather than a n*n-matrix.

Parameters:
double **A

Matrix[n x 5] (see above).

78 libRadtran

double *b Vector[n] (see above).

double n Number of equations.

double **res
Pointer to the result vector[n]; if no unique solution exists, *res will
be set to NULL.

Return value:
0 if o.k., <0 if no unique solution.

Example:

Files: none

Known bugs:
none

Author:

3.2.3.6 Function solve three

Functionint solve three (double **A, double *b, int n, double **res)

Description:
Solve a system of n linear equations, A*x = b, where A is a three-diagonal
matrix; for details see Engeln-Muellges, pg.95ff. Memory for the result vector
is allocated automatically. If possible, solve three ms() should be preferred to
solve three(), because much less memory is required by the latter.

Parameters:

double **A
Matrix[n x n] (see above).

double *b Vector[n] (see above).

double n Number of equations.

double **res
Pointer to the result vector[n]; if no unique solution exists, *res will
be set to NULL.

Return value:
0 if o.k., <0 if no unique solution.

Example:

Files: none

Known bugs:
none

Author:

Chapter 3: C functions in libRadtran 79

3.2.3.7 Function solve three ms

Functionint solve three ms (double **A, double *b, int n, double **res)

Description:
Same function as solve three(), but much more memory efficient on the cost
of some user-friendlyness. In contrast to solve three(), A is defined as a n*3-
matrix, rather than a n*n-matrix.

Parameters:
double **A

Matrix[n x 3] (see above).

double *b Vector[n] (see above).

double n Number of equations.

double **res
Pointer to the result vector[n]; if no unique solution exists, *res will
be set to NULL.

Return value:
0 if o.k., <0 if no unique solution.

Example:

Files: none

Known bugs:
none

Author:

3.2.3.8 Function fsolve three ms

Functionint fsolve three ms (float **A, float *b, int n, float **res)

Description:
Similar to solve three ms, only all data are of type float instead of float. Same
function as solve three(), but much more memory efficient on the cost of some
user-friendlyness. In contrast to solve three(), A is defined as a n*3-matrix,
rather than a n*n-matrix.

Parameters:
float **A Matrix[n x 3] (see above).

float *b Vector[n] (see above).

float n Number of equations.

float **res
Pointer to the result vector[n]; if no unique solution exists, *res will
be set to NULL.

80 libRadtran

Return value:
0 if o.k., <0 if no unique solution.

Example:

Files: none

Known bugs:
none

Author:

3.2.3.9 Function double equal

Functionint double equal (double a, double b)

Description:
Compare two float values; returns 0, if the relative difference is bigger than
DOUBLE RELATIVE ERROR, which is 1E-10 here. The intention of this
function is to avoid roundoff errors when comparing two floats.

Parameters:
double a First float to be compared.

double b Second float to be compared.

Return value:
1 if ’equal’, 0 if not equal.

Example:

Files: none

Known bugs:
none

Author:

3.2.3.10 Function sort long

Functionvoid sort long (long *x1, long *x2)

Description:
Sort two long integers in ascending order.

Parameters:
long *x1 Pointer to first integer.

long *x2 Pointer to second integer.

Return value:
None.

Example:

Chapter 3: C functions in libRadtran 81

Files: none

Known bugs:
none

Author:

3.2.3.11 Function sort double

Functionvoid sort double (double *x1, double *x2)

Description:
Sort two doubles in ascending order.

Parameters:
double *x1

Pointer to first double.

double *x2
Pointer to second double.

Return value:
None.

Example:

Files: none

Known bugs:
none

Author:

3.2.3.12 Function fak

Functiondouble fak (long n)

Description:
Calculate the faculty n! of an integer number n.

Parameters:
long n Function input.

Return value:
Result n!

Example:

Files: none

Known bugs:
none

Author:

82 libRadtran

3.2.3.13 Function integrate

Functiondouble integrate (double *x_int, double *y_int, int number)

Description:
Integrate a function which is defined at discrete x-values over the whole defined
range. x values must be sorted in ascending order. ATTENTION: integrate
does not check this, but will rather return a wrong result. integrate approxi-
mates the integral with a trapezoidal rule.

Parameters:
double *x_int

x values of the data points.

double *y_int
y values of the data points.

int number
Number of data points.

Return value:
Integral of the function over the whole range (double).

Example:

Files: none

Known bugs:
none

Author:

3.2.3.14 Function integrate spline

Functionint integrate spline (double *x, double *y, int number, double a,
double b, double *integral)

Description:
Calculate integral y(x) dx between a and b by interpolating the data points
(x[i], y[i]) with natural cubic splines.

Parameters:
double *x Vector[0..number-1] of x-values.

double *x Vector[0..number-1] of y-values.

int number
Number of data points (x[i],y[i]).

double a Integration start.

double b Integration end.

double *intgral
Calculated integral.

Chapter 3: C functions in libRadtran 83

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.15 Function linear coeffc

Functionint linear coeffc (double *x, double *y, int number, double **a0,
double **a1, double **a2, double **a3)

Description:
Calculate coefficients for linear interpolation; memory for coefficients will be al-
located automatically! These function has been created for compatibility with
the spline interpolation functions; for this reason four coefficients are calcu-
lated, but a2[] and a3[] are set to zero. The interpolation may be done with
calc spline values().

Parameters:
double *x x values of the data points, i=0...number-1

double *y y values of the data points, i=0...number-1

int number
number of datapoints

double **a0
array of coefficients, i=0...number-1

double **a1
array of coefficients, i=0...number-1

double **a2
array of coefficients, i=0...number-1, set to zero

double **a3
array of coefficients, i=0...number-1, set to zero

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

84 libRadtran

3.2.3.16 Function slinear coeffc

Functionint slinear coeffc (double *x, double *y, int number, double **a0,
double **a1, double **a2, double **a3)

Description:
Like linear coeffc(), but sort data before calculating coefficients. Please note
that the fields x and y themselves are sorted by slinear coeffc() which is an
important pre-requisite when they are passed to calc splined value() later.

Parameters:
double *x x values of the data points, i=0...number-1

double *y y values of the data points, i=0...number-1

int number
number of datapoints

double **a0
array of coefficients, i=0...number-1

double **a1
array of coefficients, i=0...number-1

double **a2
array of coefficients, i=0...number-1, set to zero

double **a3
array of coefficients, i=0...number-1, set to zero

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.17 Function gauss

Functiondouble gauss (double x, double mu, double sigma)

Description:
Calculate a Gauss function for given average and standard deviation.

Parameters:
double x x value where the Gauss function is to be evaluated.

double mu Average.

Chapter 3: C functions in libRadtran 85

double sigma
Standard deviation.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.18 Function regression

Functionint regression (double *x, double *y, int n, double *a, double
*b, double *sigma_a, double *sigma_b, double *correlation)

Description:
Calculate coefficients for y = a + b*x by linear regression.

Parameters:

double *x Vector (0..n-1) of x-values.

double *y Vector (0..n-1) of y-values.

int n Number of data points.

double *a Coefficient a.

double *b Coefficient b.

double *sigma_a
Standard deviation of a.

double *sigma_b
Standard deviation of b.

double *correlation
Correlation coefficient.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

86 libRadtran

3.2.3.19 Function weight regression

Functiondouble weight regression (double *x, double *y, double *sigma,
int n, double *a, double *b, double *sigma_a, double *sigma_b)

Description:
Calculate coefficients for y = a + b*x by weighted linear regression. Each data
point is weighted with (1 / sigma[i]**2)

Parameters:
double *x Vector (0..n-1) of x-values.

double *y Vector (0..n-1) of y-values.

double *sigma
Vector (0..n-1) of weighting coefficients.

int n Number of data points.

double *a Coefficient a.

double *b Coefficient b.

double *sigma_a
Standard deviation of a.

double *sigma_b
Standard deviation of b.

double *correlation
Correlation coefficient.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.20 Function spline

Functionint spline (double *x, double *y, int number, double start, double
step, int *newnumber, double **new_x, double **new_y)

Description:
Interpolate between given data points using natural cubic splines. The input
data (x,y) are interpolated to an equidistant grid (start, step). Memory for
result vectors will be allocated automatically.

Parameters:

Chapter 3: C functions in libRadtran 87

double *x x[0..number-1], x-values of the input data.

double *y y[0..number-1], y-values of the input data.

int number
Number of input data points (x[i], y[i]).

double start
Start point for the output grid.

double step
Step of the output grid; data are interpolated to start, start+step,
start+2*step, ...

int *newnumber
Number of output data points.

double *x_new
x new[0..newnumber], x-values of the interpolated data points.

double *y_new
y new[0..newnumber], y-values of the interpolated data points.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.21 Function spline coeffc

Functionint spline coeffc (double *x, double *y, int number, double **a0,
double **a1, double **a2, double **a3)

Description:
Calculate coefficients for natural cubic spline. These coefficients may be used
as input to calc splined value() in order to interpolate the data points at ar-
bitrary x values. Memory for the vectors a0, a1, a2, and a3 will be allocated
automatically.

Parameters:
double *x x[0..number-1], x-values of the input data.

double *y y[0..number-1], y-values of the input data.

int number
Number of input data points (x[i], y[i]).

double **a0
Pointer to vector of 0th order spline coefficients.

88 libRadtran

double **a1
Pointer to vector of 1st order spline coefficients.

double **a2
Pointer to vector of 2nd order spline coefficients.

double **a3
Pointer to vector of 3rd order spline coefficients.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.22 Function fspline coeffc

Functionint fspline coeffc (float *x, float *y, int number, float **a0,
float **a1, float **a2, float **a3)

Description:
Similar to spline coeffc, only all data are of type float instead of double. Cal-
culate coefficients for natural cubic spline. These coefficients may be used as
input to calc splined value() in order to interpolate the data points at arbi-
trary x values. Memory for the vectors a0, a1, a2, and a3 will be allocated
automatically.

Parameters:
float *x x[0..number-1], x-values of the input data.

float *y y[0..number-1], y-values of the input data.

int number
Number of input data points (x[i], y[i]).

float **a0
Pointer to vector of 0th order spline coefficients.

float **a1
Pointer to vector of 1st order spline coefficients.

float **a2
Pointer to vector of 2nd order spline coefficients.

float **a3
Pointer to vector of 3rd order spline coefficients.

Return value:
0 if o.k., <0 if error

Chapter 3: C functions in libRadtran 89

Example:

Files: none

Known bugs:
none

Author:

3.2.3.23 Function appspl

Functionint appspl(double *x, double *y, double *w, int number, double
start, double step, int *newnumber, double **new_x, double **new_y)

Description:
Approximate data points using natural cubic splines. The input data (x,y) are
interpolated to an equidistant grid (start, step). Memory for result vectors will
be allocated automatically.

Parameters:
double *x x[0..number-1], x-values of the input data.

double *y y[0..number-1], y-values of the input data.

double *w y[0..number-1], weighting coefficients. Increasing w will increase
the degree of approximation; extreme cases are w=0 (interpolating
spline) and w=infinity (linear regression).

int number
Number of input data points (x[i], y[i]).

double start
Start point for the output grid.

double step
Step of the output grid; data are interpolated to start, start+step,
start+2*step, ...

int *newnumber
Number of output data points.

double *x_new
x new[0..newnumber], x-values of the interpolated data points.

double *y_new
y new[0..newnumber], y-values of the interpolated data points.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

90 libRadtran

3.2.3.24 Function appspl coeffc

Functionint appspl coeffc (double *x, double *y, double *w, int number,
double **a0, double **a1, double **a2, double **a3)

Description:
Calculate coefficients for approximating cubic spline. These coefficients may be
used as input to calc splined value() in order to interpolate the data points at
arbitrary x values. Memory for the vectors a0, a1, a2, and a3 will be allocated
automatically.

Parameters:

double *x x[0..number-1], x-values of the input data.

double *y y[0..number-1], y-values of the input data.

double *w w[0..number-1], weighting coefficients. Increasing w will increase
the degree of approximation; extreme cases are w=0 (interpolating
spline) and w=infinity (linear regression).

int number
Number of input data points (x[i], y[i]).

double **a0
Pointer to vector of 0th order spline coefficients.

double **a1
Pointer to vector of 1st order spline coefficients.

double **a2
Pointer to vector of 2nd order spline coefficients.

double **a3
Pointer to vector of 3rd order spline coefficients.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.25 Function calc splined value

Functionint calc splined value (double xnew, double *ynew, double *x,
int number, double *a0, double *a1, double *a2, double *a3)

Chapter 3: C functions in libRadtran 91

Description:
Interpolate/approximate data to x new. Basis are the spline coefficients which
have been determined either by spline coeffc or by appspl coeffc, or even by
linear coeffc.

Parameters:
double xnew

x-value to be interpolated.

double *ynew
Pointer to the calculated y-value.

double *x x[0..number-1], original x-values.

int number
Number of original x-values.

double **a0
Pointer to vector of 0th order spline coefficients.

double **a1
Pointer to vector of 1st order spline coefficients.

double **a2
Pointer to vector of 2nd order spline coefficients.

double **a3
Pointer to vector of 3rd order spline coefficients.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.26 Function fcalc splined value

Functionint fcalc splined value (float xnew, float *ynew, float *x, int
number, float *a0, float *a1, float *a2, float *a3)

Description:
Similar to calc splined value, only all data are of type float instead of double.
Interpolate/approximate data to x new. Basis are the spline coefficients which
have been determined by fspline coeffc.

Parameters:
float xnew

x-value to be interpolated.

92 libRadtran

float *ynew
Pointer to the calculated y-value.

float *x x[0..number-1], original x-values.

int number
Number of original x-values.

float **a0
Pointer to vector of 0th order spline coefficients.

float **a1
Pointer to vector of 1st order spline coefficients.

float **a2
Pointer to vector of 2nd order spline coefficients.

float **a3
Pointer to vector of 3rd order spline coefficients.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.2.3.27 Function linear eqd

Functionint linear eqd (double *x, double *y, int number, double start,
double step, int *newnumber, double **new_x, double **new_y)

Description:
Interpolate linearely between given data points (x[i], y[i]). The input data (x,y)
are interpolated to an equidistant grid (start, step). Memory for result vectors
will be allocated automatically. The syntax of linear eqd is identical to spline.

Parameters:
double *x x[0..number-1], x-values of the input data.

double *y y[0..number-1], y-values of the input data.

int number
Number of input data points (x[i], y[i]).

double start
Start point for the output grid.

double step
Step of the output grid; data are interpolated to start, start+step,
start+2*step, ...

Chapter 3: C functions in libRadtran 93

int *newnumber
Number of output data points.

double *x_new
x new[0..newnumber], x-values of the interpolated data points.

double *y_new
y new[0..newnumber], y-values of the interpolated data points.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.3 Fortran/C array functions

3.3.1 Usage of the Fortran/C array functions

In order to use the functions provided by the fortran and c library, #include <for-
tran and c.h> in your source code and link with libRadtran c.a.

Example: Example for a source file:

...
#include <fortran_and_c.h>
...

Linking of the executable, using the GNU compiler gcc:

gcc -o test test.c -lRadtran_c -L../lib

3.3.2 General comments to the Fortran/C functions

The fortran and c library provides functions converting from multidimensional C arrays
to one-dimensional fortran arrays that can be input to fortran routines, and functions for
converting one-dimensional fortran compatible arrays to multidimensional C arrays.

These functions are useful when calling fortran functions and subroutines from C.

3.3.3 Fortran/C Library functions

94 libRadtran

3.3.3.1 Function c2fortran 2D float ary

Functionfloat *c2fortran 2D float ary (int dim1, int dim2, float**
ary_2D)

Description:
Convert 2D C float array to 1D column float array and map it such that it can
be passed to a fortran routine.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

float **ary_2D
pointer to the 2D C array

Return value:
Pointer to the 1D fortran compatible array. Memory allocation is done auto-
matically and can be freed with a simple free().

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.3.3.2 Function fortran2c 2D float ary

Functionfloat **fortran2c 2D float ary (int dim1, int dim2, float*
ary_1D)

Description:
Convert 1D fortran compatible float array to 2D C float array. Space for the
returned ary is automatically allocated.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

float *ary_1D
pointer to the 1D fortran compatible array

Return value:
Pointer to the 2D C array. Memory allocation is done automatically.

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

Chapter 3: C functions in libRadtran 95

3.3.3.3 Function fortran2c 2D float ary noalloc

Functionvoid fortran2c 2D float ary noalloc (int dim1, int dim2,
float* ary_1D, float** ary_2D)

Description:
Convert 1D fortran compatible float array to a pre-allocated 2D C float array.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

float *ary_1D
pointer to the 1D fortran compatible array

float *ary_2D
pointer to the 2D C compatible array

Return value:
Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.3.3.4 Function fortran2c 2D double ary noalloc

Functionvoid fortran2c 2D double ary noalloc (int dim1, int dim2,
double* ary_1D, double** ary_2D)

Description:
Convert 1D fortran compatible double array to 2D C double array.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

double *ary_1D
pointer to the 1D fortran compatible array

Return value:
Pointer to the 2D C array. Memory allocation is done automatically.

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

96 libRadtran

3.3.3.5 Function fortran2c 2D double ary

Functiondouble **fortran2c 2D double ary (int dim1, int dim2, double*
ary_1D)

Description:
Convert 1D fortran compatible double array to 2D C double array. Space for
the returned ary is automatically allocated.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

double *ary_1D
pointer to the 1D fortran compatible array

Return value:
Pointer to the 2D C array. Memory allocation is done automatically.

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.3.3.6 Function fortran2c 3D float ary noalloc

Functionvoid fortran2c 3D float ary noalloc (int dim1, int dim2, int
dim3, float *ary_1D, float ***ary_3D)

Description:
Convert 1D fortran compatible float array to a pre-allocated 3D C float array.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

float *ary_1D
pointer to the 1D fortran compatible array

Return value:
Example:

Files: none

Known bugs:
none

Author: Arve Kylling

Chapter 3: C functions in libRadtran 97

3.3.3.7 Function fortran2c 3D float ary

Functionfloat ***fortran2c 3D float ary (int dim1, int dim2, int dim3,
float* ary_1D)

Description:
Convert 1D fortran compatible float array to 3D C float array. Space for the
returned ary is automatically allocated.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

float *ary_1D
pointer to the 1D fortran compatible array

Return value:
Pointer to the 3D C array. Memory allocation is done automatically.

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.3.3.8 Function fortran2c 4D float ary

Functionfloat ****fortran2c 4D float ary (int dim1, int dim2, int
dim3, int dim4, float* ary_1D)

Description:
Convert 1D fortran compatible float array to 4D C float array. Space for the
returned ary is automatically allocated.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

float *ary_1D
pointer to the 1D fortran compatible array

Return value:
Pointer to the 4D C array. Memory allocation is done automatically.

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

98 libRadtran

3.3.3.9 Function fortran2c 4D double ary noalloc

Functionvoid fortran2c 4D double ary noalloc (int dim1, int dim2, int
dim3, int dim4, double* ary_1D, double ****ary_4D)

Description:
Convert 1D fortran compatible double array to 4D C double array.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

double *ary_1D
pointer to the 1D fortran compatible array

Return value:
Pointer to the 4D C array. Memory allocation is done automatically.

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

3.3.3.10 Function fortran2c 4D double ary

Functiondouble ****fortran2c 4D double ary (int dim1, int dim2, int
dim3, int dim4, double* ary_1D)

Description:
Convert 1D fortran compatible double array to 4D C double array. Space for
the returned ary is automatically allocated.

Parameters:
int dim1 first dimension of C array

int dim2 second dimension of C array

double *ary_1D
pointer to the 1D fortran compatible array

Return value:
Pointer to the 4D C array. Memory allocation is done automatically.

Example:

Files: none

Known bugs:
none

Author: Arve Kylling

Chapter 3: C functions in libRadtran 99

3.4 Sun-Earth Astronomical Relationship

3.4.1 Usage of the Sun library

In order to use the functions provided by the sun library, #include <sun.h> in your
source code and link with libRadtran c.a.

Example: Example for a source file:

...
#include "../src_c/sun.h"
...

Linking of the executable, using the GNU compiler gcc:

gcc -o test test.c -lRadtran_c -L../lib

3.4.2 General comments to the Sun Library

The sun library provides functions for solar zenith and azimuth angle and sun-earth-
distance calculations. All formulas have been taken from Iqbal, "An introduction to solar
radiation".

3.4.3 Sun Library functions

3.4.3.1 Function eccentricity

Functiondouble eccentricity (int day)

Description:
Calculate the eccentricity correction factor E0 = (r0/r)**2 according to Iqbal,
page 3. This factor, when multiplied with the irradiance, accounts for the
annual variation of the sun-earth-distance.

Parameters:
int day day of year (leap day is usually not counted.

Return value:
The eccentricity (double) for the specified day.

Example:

Files: none

Known bugs:
none

Author:

100 libRadtran

3.4.3.2 Function declination

Functiondouble declination (int day)

Description:
Calculate the declination for a specified day (Iqbal, page 7).

Parameters:
int day day of year (leap day is usually not counted.

Return value:
The declination in degrees (double) for the specified day.

Example:

Files: none

Known bugs:
none

Author:

3.4.3.3 Function equation of time

Functionint equation of time (int day)

Description:
Calculate the equation of time for a specified day (Iqbal, page 11).

Parameters:
int day day of year (leap day is usually not counted.

Return value:
The equation of time in seconds (double) for the specified day.

Example:

Files: none

Known bugs:
none

Author:

3.4.3.4 Function LAT

Functionint LAT (int time_std, int day, double longitude, double
long_std)

Description:
Calculate the local apparent time for a given standard time and location.

Parameters:

Chapter 3: C functions in libRadtran 101

int time_std
Standard time [seconds since midnight].

int day day of year (leap day is usually not counted.

double longitude
Longitude [degrees] (West positive).

double long_std
Standard longitude [degrees].

Return value:
The local apparent time in seconds since midnight (double).

Example:

Files: none

Known bugs:
none

Author:

3.4.3.5 Function solar zenith

Functiondouble solar zenith (int time, int day, double latitude, double
longitude, double long_std)

Description:
Calculate the solar zenith angle for a given time and location.

Parameters:
int time Standard time [seconds since midnight].

int day day of year (leap day is usually not counted.

double latitude
Latitude [degrees] (North positive).

double longitude
Longitude [degrees] (West positive).

double long_std
Standard longitude [degrees].

Return value:
The solar zenith angle [degrees].

Example:

Files: none

Known bugs:
none

Author:

102 libRadtran

3.4.3.6 Function solar azimuth

Functiondouble solar azimuth (int time, int day, double latitude,
double longitude, double long_std)

Description:
Calculate the solar azimuth angle for a given time and location.

Parameters:
int time Standard time [seconds since midnight].

int day day of year (leap day is usually not counted.

double latitude
Latitude [degrees] (North positive).

double longitude
Longitude [degrees] (West positive).

double long_std
Standard longitude [degrees].

Return value:
The solar azimuth angle [degrees].

Example:

Files: none

Known bugs:
none

Author:

3.4.3.7 Function day of year

Functionint day of year (int day, int month)

Description:
Calculate the day of year for given date (leap days are not considered.

Parameters:
int day Day of month (1..31).

int month Month (1..12).

Return value:
The day of year (int); -1 if error.

Example:

Files: none

Known bugs:
none

Author:

Chapter 3: C functions in libRadtran 103

3.4.3.8 Function zenith2time

Functionint zenith2time (int day, double zenith_angle, double latitude,
double longitude, double long_std, int *time1, int *time2)

Description:
Calculate the times for a given solar zenith angle, day of year and location.

Parameters:
int day day of year

double zenith_angle
Solar zenith angle [degrees].

double latitude
Latitude [degrees] (North positive).

double longitude
Longitude [degrees] (West positive).

double long_std
Standard longitude [degrees].

int *time1
1st time of occurence.

int *time2
2nd time of occurence.

Return value:
0 if o.k., <0 if error.

Example:

Files: none

Known bugs:
none

Author:

3.4.3.9 Function Gregorian2Julian

Functionint Gregorian2Julian (int d, int m, int y, int *jd)

Description:
Convert from Gregorian day (day, month, year) to Julian day (by the astro-
nomical definition). This function, in combination with Julian2Gregorian() is
very useful to answer questions like "which date is 666 days after December
31, 1999?" Algorithm from H.F. Fliegel and T.C. Van Flandern, "A Machine
Algorithm for Processing Calendar Dates", Communications of the Association
for Computing Machinery (CACM), Vol. 11, No. 10, 657, 1968.

Parameters:

104 libRadtran

int d Day of month (1..31).

int m Month (1..12).

int y Year (attention

int *jd The Julian day, to be calculated.

Return value:
0 if o.k., <0 if error.

Example:

Files: none

Known bugs:
none

Author:

3.4.3.10 Function Julian2Gregorian

Functionint Julian2Gregorian(int *d, int *m, int *y, int jd)

Description:
Convert from Julian day (by the astronomical definition) to Gregorian day
(day, month, year) to . This function, in combination with Gregorian2Julian()
is very useful to answer questions like "which date is 666 days after December
31, 1999?" Algorithm from H.F. Fliegel and T.C. Van Flandern, "A Machine
Algorithm for Processing Calendar Dates", Communications of the Association
for Computing Machinery (CACM), Vol. 11, No. 10, 657, 1968.

Parameters:

int *d Day of month (1..31), to be calculated.

int *m Month (1..12), to be calculated.

int *y Year, to be calculated.

int jd The Julian day.

Return value:
0 if o.k., <0 if error.

Example:

Files: none

Known bugs:
none

Author:

Chapter 3: C functions in libRadtran 105

3.4.3.11 Function location

Functionint location (char *locstr, double *latitude, double *longitude,
double *long_std)

Description:
Return latitude, longitude, and standard longitude for a given location.

Parameters:
double *latitude

Latitude (North positive).

double *longitude
Longitude (West positive).

double *long_std
Standard longitude (West positive).

char *location
String identifying the location.

Return value:
0 if o.k., <0 if error.

Example:

Files: none

Known bugs:
none

Author:

3.5 Mie calculations

3.5.1 Usage of the Mie library

In order to use the functions provided by the mie library, #include <miecalc.h> in your
source code and link with libRadtran c.a.

Example: Example for a source file:

...
#include "../src_c/miecalc.h"
...

Linking of the executable, using the GNU compiler gcc:

gcc -o test test.c -lRadtran_c

106 libRadtran

3.5.2 General comments to the Mie Library

The Mie library provides functions for Mie calculations, interfacing the MIEV0 and BH-
MIE codes by Warren Wiscombe (ftp://climate.gsfc.nasa.gov/pub/wiscombe) and Bohren
and Huffman (ftp://astro.princeton.edu/draine/scat/bhmie/). Functions for evaluating the
phase function and the integrated phase function are also provided.

3.5.3 Mie Library functions

3.5.3.1 Function mie calc

Functionint mie calc (mie_inp_struct input, mie_out_struct *output, int
program, int medium, mie_complex crefin, float wavelength, float
radius, float temperature, mie_complex *ref)

Description:
Mie calculations, using the MIEV0 and BHMIE codes by Warren Wiscombe
(ftp://climate.gsfc.nasa.gov/pub/wiscombe) and Bohren and Huffman
(ftp://astro.princeton.edu/draine/scat/bhmie/).

Parameters:
mie_inp_struct input

mie input structure (see src c/miecalc.h)

mie_out_struct *output
mie output structure (see src c/miecalc.h)

int program
MIEV0 or BHMIE

int medium
WATER, ICE, or USER; if USER, the refractive index is read from
crefin

mie_complex crefin
Complex refractive index (both numbers positive)

float wavelength
Wavelength [micron]

float radius
Droplet radius [micron]

float temperature
Temperature [K]

mie_complex *ref
Complex index of refraction

Return value:
0 if o.k., <0 if error

Example:

Chapter 3: C functions in libRadtran 107

Files: none

Known bugs:
Syntax and parameters of this function are subject to change.

Author:

3.5.3.2 Function mie calc sizedist

Functionint mie calc sizedist (mie_inp_struct input, mie_out_struct
*output, int program, int medium, mie_complex crefin, float
wavelength, float temperature, double *x_size, double *y_size, int
n_size, double *beta, double *omega, double *g, mie_complex *ref)

Description:
Mie calculations, using the MIEV0 and BHMIE codes by Warren Wiscombe
(ftp://climate.gsfc.nasa.gov/pub/wiscombe) and Bohren and Huffman
(ftp://astro.princeton.edu/draine/scat/bhmie/).

Parameters:
mie_inp_struct input

mie input structure (see src c/miecalc.h)

mie_out_struct *output
mie output structure (see src c/miecalc.h)

int program
MIEV0 or BHMIE

int medium
WATER, ICE, or USER; if USER, the refractive index is read from
crefin

mie_complex crefin
Complex refractive index (both numbers positive)

float wavelength
wavelength [micron]

float temperature
temperature

double *x_size
size distribution, radius [um]

double *y_size
size distribution, n(r)

int n_size
size distribution, number of radii

double *beta
extinction coefficient [km-1] per unit liquid water content (returned)

108 libRadtran

double *omega
Single scattering albedo (returned)

double *g Asymmetry parameter (returned)

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
Syntax and parameters of this function are subject to change.

Author:

3.5.3.3 Function phase function

Functionint phase function (float *moment, int L)

Description:
Calculate the phase function from its moments and output to a file "phase.dat".
The phase function p(µ) is

p(µ) =
∞∑

m=0

(2m + 1) · km · Pm(µ)

where km is the m’th moment and Pm(µ) is the m’th Legendre polynomial.

Parameters:

float *moment
moments of the phase function, f[0, ..., L-1]

int L number of moments

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
Syntax and parameters of this function are subject to change.

Author:

3.5.3.4 Function cumulative probability

Functionint cumulative probability (float *moment, int L)

Chapter 3: C functions in libRadtran 109

Description:
Calculate the cumulative probability distribution from the moments of the
phase function and output to file "cumulative.dat". The algorithm is described
by B.R. Barkstrom, "An efficient algorithm for choosing scattering directions
in Monte Carlo work with arbitrary phase functions", J.Q.S.R.T., 53, 23-38,
1995. The phase function p(µ) is

p(µ) =
∞∑

m=0

(2m + 1) · km · Pm(µ)

where km is the m’th moment and Pm(µ) is the m’th Legendre polynomial.

Parameters:
float *moment

moments of the phase function, f[0, ..., L-1]

int L number of moments

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
Syntax and parameters of this function are subject to change.

Author:

3.5.3.5 Function read mie table

Functionint read mie table (char *filename, double *r0, double *dr, int
*nreff, double *wavelen, double *nre, double *nim, double **extinc,
double **albedo, int **nleg, float ***legen, int quiet)

Description:
Read Frank Evans’ Mie table, similar to his subroutine READ MIE TABLE
provided in plotmietab.f; the Mie table can be either a single-column file with
the moments of the phase function, or a file complying with Frank Evans’ ’plot-
mietab’ routine, containing moments for different droplet sizes. IMPORTANT:
First, read mie table() looks for a file ’filename’.cdf which, when available, is
interpreted as the netCDF version of the file. For the netCDF format of the
Mie table file, have a look at tools/cloudprp2cdf.sh which converts the ASCII to
the netCDF version. ATTENTION: Frank Evans’ stores Legendre coefficients
f(l), not moments p(l): f = p * (2*l + 1)

Parameters:
char *filename

filename where data is stored

110 libRadtran

double *r0
smallest effective radius found in filename

double *dr
effective radius step

int *nreff
number of effective radii

double *wavelen
wavelength [nm]

double *nre
real part of the refractive index

double *nim
imaginary part of the refractive index

double **extinc
array[0 ... nreff-1] of extinction coefficients

double **albedo
array[0 ... nreff-1] of single scattering albedos

int **nleg
array[0 ... nreff-1] storing the number of Legendre coeffc.

float ***legen
array[0 ... nreff-1][0 ... nleg] of Legendre coefficients

int quiet ’Shut up!’ flag

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.5.3.6 Function read mie table lambda

Functionint read mie table lambda (char *filename, double *wavelen,
int quiet)

Description:
Similar to read mie table, but reads only wavelength

Parameters:
char *filename

filename where data is stored

Chapter 3: C functions in libRadtran 111

double *wavelen
wavelength [nm]

int quiet ’Shut up!’ flag

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.6 Miscellaneous

3.6.1 Usage of the Miscellaneous library

In order to use the functions provided by the misc library, #include <misc.h> in your
source code and link with libRadtran c.a.

3.6.2 Miscellaneous functions

3.6.2.1 Function air refraction

Functiondouble air refraction (double lambda)

Description:
Calculate index of refraction of air for ‘standard air’ according to the 1997/98
‘CRC handbook of Chemistry and Physics’. ‘Standard air’ refers to a temper-
ature of 15 deg C and a pressure of 1013.25 mbar. The index of refraction n
is defined as a function of vacuum wavelength, but due to the slow variation
of n, the errors are negligibly small when using the air wavelength as input for
air refraction(). The formula is valid between 200 and 2000 nm.

Parameters:
double lambda

Wavelength in nm.

Return value:
Index of refraction (double)

Example:

Files: none

Known bugs:
none

Author:

112 libRadtran

3.6.2.2 Function vac2air

Functionint vac2air (double *lambda, double *irradiance, int rows, char
reverse, char linear, double **irradiance_shifted)

Description:
Shift a spectrum from vacuum to air or vice versa. The shifted data are re-
gridded to the original wavelength grid. The index of refraction is calculated
with air refraction().

Parameters:
double *lambda

Original wavelength grid, i = 0..rows

double *irradince
Original irradiance data, i = 0..rows

int rows Number of data pairs.

char *reverse
If 0, convert from vacuum to air, else vice versa.

char *linear
If 0, use spline interpolation, else linear.

double **irradiance_shifted
Shifted irradiance, i = 0..rows, referring to the original wavelength
grid; memory is allocated automatically.

Return value:
0 if o.k., <0 if error

Example:

Files: none

Known bugs:
none

Author:

3.6.2.3 Function snowalbedo

Functionvoid snowalbedo(double omega, double tau, double gg, double
surface_albedo, double umu0, double* albedo_diffuse, double*
albedo_direct)

Description:
Calculate the diffuse and direct albedo as formulated by Wiscombe and War-
ren, Journal of the Atmospheric Sciences, vol, 37, 2712-2733, 1980. Equation
numbers below refer to equations in their paper.

Parameters:

Chapter 3: C functions in libRadtran 113

double omega
snow single scattering albedo

double tau
snow optical depth

double gg snow assymmetry factor

double surface_albedo
albedo of underlying surface

double umu0
cosine of solar zenith angle

double albedo_diffuse
diffuse snow albedo, Eq. 6

double albedo_direct
direct snow albedo, Eq. 3

Return value:
None

Example:

Files: none

Known bugs:
none

Author: Arve Kylling, arve.kylling@nilu.no

114 libRadtran

Chapter 4: Fortran library functions 115

4 Fortran library functions

4.1 Fortran functions in libRadtran

4.1.1 Function wcloud

FunctionSUBROUTINE wcloud(wavlen, newsiz, nlyr, path, nstring, wccon,
wceffr, wc_dtau, wc_gg, wc_ssa, zd, wclyr)

Description:
wcloud calculates the asymmetry factor, the single scattering albedo and the
extinction optical depth of water clouds for a single wavelength. The parame-
terization due to Hu and Stamnes (1993) is used.

Parameters:
REAL lambda

The wavelength in nanometers. (input)

LOGICAL newsiz
Set newsiz=.TRUE. whenever new water cloud liquid water content
and/or effective radius are given. If wccon and wceffr are the same
as in the previous call set newsiz = .FALSE. to save computer time.
Must be equal to .TRUE. on the first call. (input)

INTEGER nlyr
Number of atmospheric layers. (input)

CHARACTER*(*) path
The filepath to water cloud parameterization files. (input)

REAL(*) wccon
The liquid water content of each layer in grams per cubic meter.
nlyr+1 elements.(input)

REAL(*) wceffr
The water droplet effective radius in microns. nlyr+1 elements.
(input)

REAL(*) wc_dtau
The water cloud optical depth of each layer. nlyr elements. (out-
put)

REAL(*) wc_gg
The water cloud asymmetry factor of each layer. nlyr elements.
(output)

REAL(*) wc_ssa
The water cloud single scattering of each layer. nlyr elements. (out-
put)

116 libRadtran

REAL(*) zd
The altitude of each level in km. zd(nlyr) is the bottom of the
atmosphere. nlyr+1 elements. (input)

INTEGER wclyr
If wclyr is .EQ. 0, the cloud properties are defined per level, other-
wise per layer. (input)

Return value:
Example:

See ‘uvspec.c’.

Files:
‘DISORT.MXD’ with parameter mxcly must be present in the same directory as
‘wcloud.f’.

Known bugs:
none

Author: Arve Kylling

References 117

References

• Anderson, G.P., S.A. Clough, F.X. Kneizys, J.H. Chetwynd and E.P. Shettle 1986,
‘AFGL Atmospheric Constituent Profiles (0-120 km)’, AFGL-TR-86-0110, AFGL
(OPI), Hanscom AFB, MA 01736.

• Cox, C. and W. Munk, ’Measurement of the roughness of the sea surface from pho-
tographs of the sun’s glitter’, 1954, Journal of the Optical Society of America, 44,
838-850.

• Cox, C. and W. Munk, ’Statistics of the sea surface derived from sun glitter’, 1954,
Journal of Marine Research, 13, 198-227.

• Dahlback, A. and K. Stamnes, 1991, ‘A new spherical model for computing the ra-
diation field available for photolysis and heating at twilight’, Planet. Space Sci., 39,
671-683.

• Dahlback, A., 1996, ’Measurement of biologically effective UV doses, total ozone abun-
dances, and cloud effects with multichannel, moderate bandwidth filter instruments’,
Applied Optics, 6514-6521.

• Daumont, D., J. Brion, J. Charbonnier, and J. Malicet, 1992, ’Ozone UV Spectroscopy
I: Absorption Cross-Sections at Room Temperature’, J. Atm. Chem., 15, 145-155.

• Edwards, D.P., 1992, ’GENLN2: A general line-by-line atmospheric transmittance
and radiance model: Version 3.0 description and users guide’, National Center for
Atmospheric Research (NCAR), NCAR/TN-367+STR, Boulder, Colorado.

• Evans, K.F. and G.L. Stephens, 1991, ’A new polarized atmospheric radiative transfer
model’, J. Quant. Spectrosc. Radiat. Transfer, 46, 413-423.

• Fu, Q. and K.N. Liou, 1992, ‘On the correlated k-distribution method for radiative
transfer in nonhomogeneous atmospheres’, J. Atm. Sci., 49, 2139-2156.

• Fu, Q. and K.N. Liou, 1993, Parameterization of the radiative properties of cirrus
clouds, J. Atm. Sci., 50, 2008-2025.

• Fu, Q., 1996, ‘An accurate parameterization of the solar radiative properties of cirrus
clouds in climate models’, Journal of Climate, 9, 2058-2082.

• Fu, Q., P. Yang, and W.B. Sun, 1998, ‘An accurate parameterization of the infrared
radiative properties of cirrus clouds in climate models’, Journal of Climate, 11, 2223-
2237.

• Garcia, R., and C. Siewert 1985, ‘Benchmark results in radiative transfer’, Transp.
Theory and Stat. Physics, 14, 437-484.

• Hu, Y.X. and K. Stamnes 1993, ‘An accurate parameterization of the radiative prop-
erties of water clouds suitable for use in climate models’, J. Climate, 6, 728-742.

• Kato, S., T.P. Ackerman, J.H. Mather, and E.E. Clothiaux, 1999, ‘The k-distribution
method and correlated-k approximation for a shortwave radiative transfer model’ J.
Quant. Spectrosc. Radiat. Transfer, 62, 109-121.

• Key, J., P. Yang, B. Baum, and S. Nasiri, 2002, ’Parameterization of shortwave ice
cloud optical properties for various particle habits’, J. Geophys. Res., 107, D13,
10.1029/2001JD000742.

• Kratz, D.P., 1995, ‘The correlated k-distribution technique as applied to the AVHRR
channels’, J. Quant. Spectrosc. Radiat. Transfer, 53, 501-517.

118 libRadtran

• Kylling, A., K. Stamnes, and S.-C. Tsay, 1995, ‘A reliable and efficient two-stream
algorithm for radiative transfer; Documentation of accuracy in realistic layered media’,
accepted for publication in J. of Atmospheric Chemistry.

• Malicet, J., D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, 1995,
’Ozone UV Spectroscopy II: Absorption Cross-Sections and Temperature Dependence’,
J. Atm. Chem., 21, 263-273.

• Mayer, B., G. Seckmeyer and A. Kylling, 1997, ‘Systematic long-term comparison of
spectral UV measurements and UVSPEC modeling results’, J. Geophys. Res., 102,
8755–8767.

• Mayer, B., A. Kylling, S. Madronich, and G. Seckmeyer, 1998, Enhanced absorption
of UV radiation due to multiple scattering in clouds: experimental evidence and theo-
retical explanation, J. Geophys. Res., 103 (D23), 31241-31254.

• Molina, L. T. and M. J. Molina, 1986, ‘Absolute Absorption Cross Sections of Ozone
in the 185- to 350-nm Wavelength Range’, J. Geophys. Res., 91, 14,501-14,508.

• Nakajima, T. and M. Tanaka, ’Effect of wind-generated waves on the transfer of so-
lar radiation in the atmosphere-ocean system’, 1983, J. Quant. Spectrosc. Radiat.
Transfer, 29, 521-537.

• Nakajima, T., and M. Tanaka, 1988, ‘Algorithms for radiative intensity calculations in
moderately thick atmospheres using a truncation approximation’, J. Quant. Spectrosc.
Radiat. Transfer, 40, 51-69.

• Nicolet, M. ,1984, ‘On the molecular scattering in the terrestrial atmosphere: an empir-
ical formula for its calculation in the homosphere’, Planet. Space Sci., 32, 1467-1468.

• Pierluissi, J.H., and G.-S. Peng, 1985, ’New molecular transmission band models for
LOWTRAN’, Optical Engineering, 24, 541-547.

• Rahman, H. and B. Pinty, and M.M. Verstraete, 1993, ’Coupled Surface-Atmosphere
Reflectance (CSAR) Model. 2. Semiempirical Surface Model Usable With NOAA
Advanced Very High Resolution Radiometer Data’, J. Geophys. Res. 98, 20791-20801.

• Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle, 1998, ‘SBDART: A research and
teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere‘,
Bull. Am. Met. Soc. 79, 2101-2114.

• Shettle E. P. (1989), ‘Models of aerosols, clouds and precipitation for atmospheric
propagation studies’, in AGARD Conference Proceedings No. 454, Atmospheric prop-
agation in the uv, visible, ir and mm-region and related system aspects.

• Stamnes, K., 1982, ‘Reflection and Transmission by a Vertically Inhomogeneous Plan-
etary Atmosphere’, Planet. Space Sci. 30, 727-732.

• Stamnes, K., S.-C. Tsay, W. Wiscombe and K. Jayaweera, 1988, ‘Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple scattering and
emitting layered media’, Applied Optics, 27, 2502.

• Stamnes, K., J. Slusser, and M. Bowen, 1991, ’Derivation of Total Ozone Abundance
and Cloud Effects from Spectral Irradiance Measurements’, Applied Optics, 30, 4418-
4426.

• Wiscombe, W., 1977, ‘The Delta-M Method: Rapid Yet Accurate Radiative Flux Cal-
culations, J. Atmos. Sci. 34, 1408-1422.

References 119

• Wiscombe, W.J. and J.W. Evans, 1977, ’Exponential-sum fitting of radiative transmis-
sion functions’, Journal of Computational Physics, 24, 416-444.

• Wiscombe, W.J. and S.G. Warren, 1980, ’A Model for the Spectral Albedo of Snow. I:
Pure Snow’, J. Atm. Sci., 37, 2712-2733.

• Yang, P. and K.N. Liou and K. Wyser, and D. Mitchell, 2000, ’Parameterization of
the scattering and absorption properties of individual ice crystals’, J. Geophys. Res.,
105(D4), 4699-4718.

• Yang, P., B.-C. Gao, B.A.Baum ,X.H. Yong, W.J. Wiscombe, S.-C. Tsay, D.M. Winker,
and S.L.Nasiri, 2001, ’Radiative properties of cirrus clouds in the infrared (8-13 micron)
spectral region’, J. Quant. Spectrosc. Radiat. Transfer, 70, 473-504.

120 libRadtran

i

Table of Contents

Preface . 1
Acknowledgements . 1

1 A Brief Overview of libRadtran 3
1.1 Radiative transfer calculations. 3
1.2 Ozone retrieval from global irradiance measurements 3
1.3 Cloud optical thickness from global irradiance measurements

. 4
1.4 ... and much more . 4

2 Some useful tools . 5
2.1 uvspec . 5

2.1.1 The uvspec input file . 5
2.1.1.1 Cloudless, aerosol-free atmosphere 5
2.1.1.2 Spectral resolution . 8
2.1.1.3 Aerosol . 14
2.1.1.4 Water clouds . 16
2.1.1.5 Ice clouds . 17
2.1.1.6 Calculation of radiances 19

2.1.2 The uvspec output . 19
2.1.2.1 DISORT, SDISORT and SPSDISORT . . 19
2.1.2.2 TWOSTR . 20
2.1.2.3 POLRADTRAN . 20
2.1.2.4 Description of symbols 20

2.1.3 Complete description of input parameters 21
2.2 mie . 46

2.2.1 The mie input file . 46
2.2.2 The mie output. 48
2.2.3 Examples of mie input files . 49

2.3 integrate . 49
2.4 spline . 49
2.5 conv . 49
2.6 addlevel . 49
2.7 snowalbedo . 49
2.8 cldprp . 50
2.9 Geno3tab . 50

2.9.1 Simple wavelength ratios with Gen o3 tab 50
2.9.2 Bandpassed wavelength ratios with Gen o3 tab . . 50

2.10 Genwctab . 51
2.10.1 Simple wavelength ratios with Gen wc tab 51
2.10.2 Bandpassed wavelength ratios with Gen wc tab

. 52

ii libRadtran

3 C functions in libRadtran 53
3.1 ASCII file access . 53

3.1.1 Usage of the ASCII library . 53
3.1.2 General comments to the ASCII library 53
3.1.3 ASCII Library functions . 54

3.1.3.1 Function ASCII checkfile 54
3.1.3.2 Function ASCII calloc string 55
3.1.3.3 Function ASCII free string 56
3.1.3.4 Function ASCII calloc int 56
3.1.3.5 Function ASCII calloc double 57
3.1.3.6 Function ASCII calloc double 3D 57
3.1.3.7 Function ASCII calloc double 3D arylen

. 57
3.1.3.8 Function

ASCII calloc double 3D arylen restricted . . . 58
3.1.3.9 Function ASCII calloc float 3D 58
3.1.3.10 Function ASCII calloc float 4D 59
3.1.3.11 Function ASCII calloc double 4D 59
3.1.3.12 Function ASCII calloc float 5D 59
3.1.3.13 Function ASCII calloc float 60
3.1.3.14 Function ASCII free int 60
3.1.3.15 Function ASCII free double 61
3.1.3.16 Function ASCII free float 61
3.1.3.17 Function ASCII free double 3D 62
3.1.3.18 Function ASCII free float 3D 62
3.1.3.19 Function ASCII free float 4D 62
3.1.3.20 Function ASCII free double 4D 63
3.1.3.21 Function ASCII free float 5D 63
3.1.3.22 Function ASCII readfile 64
3.1.3.23 Function ASCII string2double 64
3.1.3.24 Function ASCII string2float 64
3.1.3.25 Function ASCII file2double 65
3.1.3.26 Function ASCII file2float 66
3.1.3.27 Function ASCII column 66
3.1.3.28 Function ASCII column float 67
3.1.3.29 Function ASCII row 67
3.1.3.30 Function read 1c file 68
3.1.3.31 Function read 1c file float 68
3.1.3.32 Function read 2c file 68
3.1.3.33 Function read 2c file float 69
3.1.3.34 Function read 3c file 69
3.1.3.35 Function read 3c file float 70
3.1.3.36 Function read 4c file 70
3.1.3.37 Function read 4c file float 71
3.1.3.38 Function read 5c file 71
3.1.3.39 Function read 6c file 72
3.1.3.40 Function substr . 72
3.1.3.41 Function ASCII parse 72

iii

3.1.3.42 Function ASCII parsestring 73
3.2 Numeric functions . 73

3.2.1 Usage of the Numeric Library 73
3.2.2 General comments to the Numeric Library 74
3.2.3 Numeric Library functions. 74

3.2.3.1 Function convolute . 74
3.2.3.2 Function int convolute 75
3.2.3.3 Function solve gauss 76
3.2.3.4 Function solve five . 77
3.2.3.5 Function solve five ms 77
3.2.3.6 Function solve three 78
3.2.3.7 Function solve three ms 79
3.2.3.8 Function fsolve three ms 79
3.2.3.9 Function double equal 80
3.2.3.10 Function sort long 80
3.2.3.11 Function sort double 81
3.2.3.12 Function fak . 81
3.2.3.13 Function integrate 82
3.2.3.14 Function integrate spline 82
3.2.3.15 Function linear coeffc 83
3.2.3.16 Function slinear coeffc 84
3.2.3.17 Function gauss . 84
3.2.3.18 Function regression. 85
3.2.3.19 Function weight regression 86
3.2.3.20 Function spline . 86
3.2.3.21 Function spline coeffc 87
3.2.3.22 Function fspline coeffc 88
3.2.3.23 Function appspl . 89
3.2.3.24 Function appspl coeffc 90
3.2.3.25 Function calc splined value 90
3.2.3.26 Function fcalc splined value 91
3.2.3.27 Function linear eqd 92

3.3 Fortran/C array functions . 93
3.3.1 Usage of the Fortran/C array functions 93
3.3.2 General comments to the Fortran/C functions . . . 93
3.3.3 Fortran/C Library functions . 93

3.3.3.1 Function c2fortran 2D float ary 94
3.3.3.2 Function fortran2c 2D float ary 94
3.3.3.3 Function fortran2c 2D float ary noalloc

. 95
3.3.3.4 Function fortran2c 2D double ary noalloc

. 95
3.3.3.5 Function fortran2c 2D double ary 96
3.3.3.6 Function fortran2c 3D float ary noalloc

. 96
3.3.3.7 Function fortran2c 3D float ary 97
3.3.3.8 Function fortran2c 4D float ary 97

iv libRadtran

3.3.3.9 Function fortran2c 4D double ary noalloc
. 98

3.3.3.10 Function fortran2c 4D double ary 98
3.4 Sun-Earth Astronomical Relationship . 99

3.4.1 Usage of the Sun library . 99
3.4.2 General comments to the Sun Library 99
3.4.3 Sun Library functions . 99

3.4.3.1 Function eccentricity 99
3.4.3.2 Function declination 100
3.4.3.3 Function equation of time 100
3.4.3.4 Function LAT . 100
3.4.3.5 Function solar zenith 101
3.4.3.6 Function solar azimuth 102
3.4.3.7 Function day of year 102
3.4.3.8 Function zenith2time 103
3.4.3.9 Function Gregorian2Julian 103
3.4.3.10 Function Julian2Gregorian 104
3.4.3.11 Function location 105

3.5 Mie calculations . 105
3.5.1 Usage of the Mie library . 105
3.5.2 General comments to the Mie Library 106
3.5.3 Mie Library functions . 106

3.5.3.1 Function mie calc . 106
3.5.3.2 Function mie calc sizedist. 107
3.5.3.3 Function phase function 108
3.5.3.4 Function cumulative probability 108
3.5.3.5 Function read mie table 109
3.5.3.6 Function read mie table lambda 110

3.6 Miscellaneous . 111
3.6.1 Usage of the Miscellaneous library 111
3.6.2 Miscellaneous functions . 111

3.6.2.1 Function air refraction 111
3.6.2.2 Function vac2air . 112
3.6.2.3 Function snowalbedo 112

4 Fortran library functions 115
4.1 Fortran functions in libRadtran . 115

4.1.1 Function wcloud . 115

References. 117

	Preface
	Acknowledgements
	A Brief Overview of libRadtran
	Radiative transfer calculations
	Ozone retrieval from global irradiance measurements
	Cloud optical thickness from global irradiance measurements
	... and much more

	Some useful tools
	uvspec
	The uvspec input file
	Cloudless, aerosol-free atmosphere
	Spectral resolution
	Aerosol
	Water clouds
	Ice clouds
	Calculation of radiances

	The uvspec output
	DISORT, SDISORT and SPSDISORT
	TWOSTR
	POLRADTRAN
	Description of symbols

	Complete description of input parameters

	mie
	The mie input file
	The mie output
	Examples of mie input files

	integrate
	spline
	conv
	addlevel
	snowalbedo
	cldprp
	Geno3tab
	Simple wavelength ratios with Gen@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}o3@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tab
	Bandpassed wavelength ratios with Gen@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}o3@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tab

	Genwctab
	Simple wavelength ratios with Gen@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}wc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tab
	Bandpassed wavelength ratios with Gen@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}wc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}tab

	C functions in libRadtran
	ASCII file access
	Usage of the ASCII library
	General comments to the ASCII library
	ASCII Library functions
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}checkfile
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}string
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}string
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}int
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}arylen
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}arylen@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}restricted
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}5D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calloc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}int
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}free@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}5D
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}readfile
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}string2double
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}string2float
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file2double
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file2float
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}column
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}column@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}row
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}1c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}1c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}5c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}6c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}file
	Function substr
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}parse
	Function ASCII@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}parsestring

	Numeric functions
	Usage of the Numeric Library
	General comments to the Numeric Library
	Numeric Library functions
	Function convolute
	Function int@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}convolute
	Function solve@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}gauss
	Function solve@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}five
	Function solve@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}five@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ms
	Function solve@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}three
	Function solve@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}three@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ms
	Function fsolve@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}three@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ms
	Function double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}equal
	Function sort@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}long
	Function sort@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double
	Function fak
	Function integrate
	Function integrate@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}spline
	Function linear@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}coeffc
	Function slinear@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}coeffc
	Function gauss
	Function regression
	Function weight@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}regression
	Function spline
	Function spline@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}coeffc
	Function fspline@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}coeffc
	Function appspl
	Function appspl@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}coeffc
	Function calc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}splined@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}value
	Function fcalc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}splined@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}value
	Function linear@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}eqd

	Fortran/C array functions
	Usage of the Fortran/C array functions
	General comments to the Fortran/C functions
	Fortran/C Library functions
	Function c2fortran@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}2D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}2D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}2D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}noalloc
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}2D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}noalloc
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}2D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}noalloc
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}3D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}float@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}noalloc
	Function fortran2c@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}4D@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}double@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}ary

	Sun-Earth Astronomical Relationship
	Usage of the Sun library
	General comments to the Sun Library
	Sun Library functions
	Function eccentricity
	Function declination
	Function equation@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}of@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}time
	Function LAT
	Function solar@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}zenith
	Function solar@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}azimuth
	Function day@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}of@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}year
	Function zenith2time
	Function Gregorian2Julian
	Function Julian2Gregorian
	Function location

	Mie calculations
	Usage of the Mie library
	General comments to the Mie Library
	Mie Library functions
	Function mie@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calc
	Function mie@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}calc@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}sizedist
	Function phase@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}function
	Function cumulative@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}probability
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mie@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}table
	Function read@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}mie@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}table@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}lambda

	Miscellaneous
	Usage of the Miscellaneous library
	Miscellaneous functions
	Function air@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}refraction
	Function vac2air
	Function snowalbedo

	Fortran library functions
	Fortran functions in libRadtran
	Function wcloud

	References

