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1 Introduction

An essential prerequisite for the analysis of data recorded by atmospheric remote sensing
instruments as well as for theoretical investigations such as retrieval assessments is a
flexible, yet efficient and reliable high resolution radiative transfer code. Furthermore, as
the retrieval of atmospheric parameters is in general a nonlinear optimization problem
(inverse problem), the retrieval code has to be closely connected to the radiative transfer
code (forward model).

Although a variety of general purpose high resolution radiative transfer models has
been developed in the past decades, nb. Fascode [Clough et al., 1988] and Genln2
[Edwards, 1988], a new code has been found to be desirable because implementation
of these sophisticated line-by-line (lbl) programs in retrieval algorithms is generally a
non–trivial task. Furthermore derivatives with respect to the unknown profiles are often
not available or at least difficult to access (more recent developments such as KOPRA
Stiller et al. [2002] or ARTS Bühler et al. [2005] providing analytical derivatives were not
available then).

Given the variety of applications at DLR–IMF a new code has been designed for
arbitrary observation geometry and instrumental field-of-view (FOV) and line shape
(ILS). The original implementation MIRART( Modular InfraRed Atmospheric Radiative
Transfer), written in Fortran 77, has been developed with emphasis on efficient and re-
liable numerical algorithms and a modular approach appropriate for simulation and/or
retrieval. More recently this has been translated to modern Fortran 90/2003 as GARLIC
(Generic Atmospheric Radiation Line-by-line Infrared Code). Concurrently a version of
MIRART/GARLIC written in Python Langtangen [2004] has been developed.

2 Physical Basics of Infrared Radiative Transfer

2.1 Schwarzschild Equation and Beer’s Law

In the infrared and microwave spectral range the intensity (radiance) I at wavenumber ν
received by an instrument at s = 0 can be described by the integral form of the equation of
radiative transfer (neglecting scattering and assuming local thermodynamic equilibrium)
[Liou, 1980, Goody and Yung, 1989, Zdunkowski et al., 2007]

I(ν) = Ib(ν)T (ν;∞) −
∫ sb

0

ds′ B(ν, T (s′))
∂T (ν; s′)

∂s′
(1)

= Ib(ν)T (ν;∞) −
∫ τb

0

dτ B(ν, T (τ)) exp (−τ) (2)

where Ib is a background contribution (e.g., solar radiation at the top of the atmosphere
in case of uplooking or limbviewing geometry, or surface emission in case of nadir viewing
geometry) and B is the Planck function at temperature T ,

B(ν, T ) = 2hc2ν3
/(

ehcν/kBT − 1
)
, (3)

with c, h, kB denoting speed of light, Planck constant, and Boltzmann constant, respec-
tively. The monochromatic transmission T (relative to the observer) is given according
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to Beer’s law by

T (ν; s) = e−τ(ν;s) (4)

= exp

[
−
∫ s

0

α(ν, s′) ds′
]
, (5)

α(ν; s) =
∑
m

km(ν, s) nm(s) + αtext(c)(ν, s) (6)

where τ is the optical depth, α is the volume absorption coefficient, km and nm are the
absorption cross section and density of molecule m, and α(c) the continuum absorption co-
efficient. Note that the absorption cross section is a function of (altitude dependant) pres-
sure and temperature, but for brevity the condensed notation k(ν, z) = k

(
ν, p(z), T (z)

)
has been used. In (1) we have assumed an uplooking or limb viewing path geometry, but
(1) is easily rewritten to other slant path geometries. It should also be noted that the
instrumental influence on the measured spectrum has been neglected.

2.2 Molecular Absorption

In general the molecular cross section is obtained by summing over the contributions from
many lines,

km(ν, z) =
∑
l

S
(m)
l (T (z)) g(ν; ν̂

(m)
l , γ

(m)
l (p(z), T (z))) . (7)

In the infrared and microwave spectral range molecular absorption is due to radiative
transitions between rotational and ro–vibrational states of the molecules. A single spec-
tral line is characterized by its position ν̂, line strength S, and line width γ, where the
transition wavenumber (or frequency) is determined by the energies Ei, Ef of the initial
and final state, |i〉, |f〉,

ν̂ =
1

hc
(Ef − Ei) (8)

For an individual line the cross section is the product of the temperature dependent
line strength S(T ) and a normalized line shape function g(ν) describing the broadening
mechanism, k(ν, z) = S(T (z)) · g

(
ν, p(z), T (z)

)
. In the atmosphere the combined effect of

pressure broadening (corresponding to a Lorentzian line shape) and Doppler broadening
(corresponding to a Gaussian line shape) can be represented by a Voigt line profile.

2.2.1 Line strength and partition functions

The monochromatic absorption cross section for a single line is defined as the product of
the line strength S and a normalized line profile function g essentially determined by line
broadening,

k(ν; ν̂, S, γ) = S · g(ν; ν̂, γ) with

+∞∫
−∞

g dν = 1 . (9)

For electric dipole transitions the line strength is determined by the square of the tem-
perature dependent matrix element of the electric dipole moment and by further factors
accounting for the partition function, Boltzmann-distribution, and stimulated emission,

S(T ) =
8π3

3hc

giIa
Q(T )

ν̂ e−Ei/kT
[
1− e−hcν̂/kT

]
Rif · 10−36 (10)
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here gi is the degeneracy of the nuclear spin of the lower energy state, Ia is the relative
abundance of the isotope1, Q(T ) is the total partition sum, Rif is the transition probability
given by the matrix element of the electric dipole operator Rif = |〈f |D|i〉|2. A similar
expression is found for the line strength of magnetic quadrupole transitions. In both cases
the ratio of line strength at two different temperatures is given by

S(T ) = S(T0) ×
Q(T0)

Q(T )

exp (−Ei/kT )

exp (−Ei/kT0)

1 − exp (−hcν̂/kT )

1 − exp (−hcν̂/kT0)
. (11)

Q(T ) is the product of the rotational and vibrational partition functions, Q = Qrot ·Qvib,
whose temperature dependance are calculated from

Qrot(T ) = Qrot(T0)

(
T

T0

)β
, (12)

Qvib(T ) =
N∏
i=1

[1− exp(−hcωi/kT )]−di , (13)

where β is the temperature coefficient of the rotational partition function, and N is the
number of vibrational modes with wavenumbers ωi and degeneracies di. Data required
to calculate the vibrational partition sums have been taken from Norton and Rinsland
[1991].

2.2.2 Pressure (collision) broadening — Lorentz profile

In case of pure pressure broadening the cross section for a single radiative transition is
essentially given by a Lorentzian line profile

gL(ν) =
γL/π

(ν − ν̂)2 + γ2
L

. (14)

The Lorentz half width (at half maximum, HWHM) γL is proportional to pressure p and
decreases with increasing temperature. In case of a gas mixture with total pressure p
and partial pressure ps of the absorber molecule the total width is given by the sum of
a self broadening contribution due to collisions between the absorber molecules and an
air-broadening contribution due to collisions with other molecules,

γL(p, ps, T ) =

(
γ

(0,air)
L

p− ps

p0

+ γ
(0,self)
L

ps

p0

)
×
(
T0

T

)n
. (15)

The exponent n specifying the dependence of temperature is so far known for only a few
transitions of the most important molecules. The kinetic theory of gases (collision of hard

spheres) yields the classical value n = 1
2
. The self-broadening coefficient γ

(self)
L is so far

known for only a few transitions and will otherwise be set to the air-broadening coefficient
γ

(air)
L (mostly specified for N2 and/or O2), i.e.

γL(p, T ) = γ
(air)
L

p

p0

×
(
T0

T

)n
(16)

Typical values of air-broadening coefficients are γL ≈ 0.1p [ cm−1/atm] (see Tab. 2 in
Rothman et al. [1987]).

1 In the HITRAN– and GEISA databases the abundances of the Earth atmosphere are used.
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2.2.3 Doppler broadening

The thermal motion of the molecules leads to Doppler boradening of the spectral lines,
which is described by a Gaussian line shape

gD(ν) =
1

γD

(
ln 2

π

)1/2

· exp

[
− ln 2

(
ν − ν̂
γD

)2
]
. (17)

The half width (HWHM) is essentially determined by the line position ν̂, the temperature
T , and the molecular mass m,

γD = ν̂

√
2 ln 2 kT

mc2
. (18)

For a typical atmospheric molecule one finds

γD ≈ 6 · 10−8 ν̂
√
T [K] for m ≈ 36 amu.

2.2.4 Combined Pressure and Doppler broadening

The combined effects of both broadening mechanisms can be modelled by convolution,
i.e., a Voigt line profile

gV(ν − ν̂, γL, γD) ≡ gL ⊗ gD

=

∫ ∞
−∞

dν ′ gL(ν − ν ′; ν̂, γL) × gD(ν ′ − ν̂; ν̂, γD) .
(19)

Several empirical approximations for the half width (HWHM) of a Voigt line (defined by
gV (ν̂ ± γV ) = 1

2
gV (ν̂)) have been developed [Olivero and Longbothum, 1977]. For the

approximation

γV =
1

2

(
c1γL +

√
c2γ2

L + 4γ2
D

)
with c1 = 1.0692, c2 = 0.86639 (20)

a accuracy of 0.02% has been specified, with c1 = c2 = 1 the accuracy is in the order
of one percent. A comparison of Lorentzian, Doppler, and Voigt half width is given in
Fig. 1.

3 Algorithms

3.1 Numerical Aspects — Computational Challenges

The computational challenge of high resolution atmospheric radiative transfer modelling is
due to several facts. The summation in Eq. (7) has to include all relevant lines contributing
to the spectral interval considered. In many line–by–line codes a cutoff wavenumber
of 25 cm−1 from line center is frequently employed for truncation of line wings. Note
that the widely used Hitran and Geisa spectroscopic databases [Rothman et al., 2009,
Jacquinet-Husson et al., 2008] list more than some million lines of about 40 molecules
in the microwave, infrared, to ultraviolet regime, whereas the JPL spectral line catalog
[Pickett et al., 1998] covering the submillimeter, millimeter, and microwave only has
almost 2 million entries.
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Figure 1: Half widths (HWHM) for Lorentz-, Doppler- and Voigt-Profile as a function of
altitude for a variety of line positions ν̂. The Lorentz width is essentially proportional to pres-
sure and hence decays approximately exponentially with altitude. In contrast the Doppler width
is only weakly altitude dependent. In the troposphere lines are generally pressure broadened, the
transition to the Doppler regime depends on the spectral region. The dotted line indicated at-
mospheric temperature. (Pressure and temperature: US Standard atmosphere, molecular mass
36amu)

Furthermore the wavenumber grid has to be set in accordance with the line widths γ,
i.e. the grid spacing is typically chosen in the order of δν ≈ γ/4. Typical line widths due
to pressure broadening are in the order of γ(p) ≈ (p/p0) 0.1 cm−1 with p0 = 1013 mb. In
the atmosphere the pressure decays approximately exponentially with altitude z, and the
line width decreases accordingly until Doppler broadening (proportional to line position
and the square root of the temperature over molecular mass ratio) becomes dominant (cf.
Fig. 1). Hence, for an altitude of z = 100 km with a pressure p ≈ 10−4 mb the number of
spectral grid points required for a spectral interval ∆ν = 1 cm−1 in the microwave is in
the order of 1/(0.1× 103/10−4) = 106. For a spectral interval of width ∆ν = 10 cm−1 in
the region of the CO2 ν2 band around 500 cm−1 the number of spectral grid points is in
the order of 105.

A variety of approaches has been developed to speed–up the calculation and an es-
sential difference between different line–by–line codes is the choice of the line profile ap-
proximation, wavenumber grid, and interpolation. Some of the algorithms are specifically
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designed for the individual functions to be calculated, e.g., the Clough and Kneizys [1979]
algorithm used in Fascode [Clough et al., 1988]: The Lorentzian (or Voigt function) is
decomposed using three or four even quartic functions, each of them is then calculated
on its individual grid. (A similar technique using quadratic functions has been developed
by Uchiyama [1992].) Genln2 [Edwards, 1988] performs the line–by–line calculation in
two stages, i.e., the entire spectral interval of interest is first split in a sequence of “wide
meshes”; contributions of lines with their center in the current wide mesh interval are
computed on a fine mesh, and the contribution of other lines is computed on the wide
mesh. Fomin [1995] defines a series of grids and evaluates line wing segments of larger
distance to the line center on increasingly coarse grids. Sparks [1997] also uses a series of
grids with 2k + 1 grid points (k = 1, 2, . . . , where the coarsest grid with 3 points spans
the entire region) and uses a function decomposition similar to ours.

3.2 Voigt profile and Voigt function

The convolution of a Lorentz and a Gauss profile, commonly known as the Voigt pro-
file, is important in many branches of physics, nb. atomic and molecular spectroscopy,
atmospheric radiative transfer [Armstrong, 1967].

It is convenient to define the Voigt function K(x, y) normalized to
√
π,

K(x, y) =
y

π

∫ ∞
−∞

e−t
2

(x− t)2 + y2
dt , (21)

where the dimensionless variables x, y are defined in terms of the distance from the center
position, ν − ν̂0, and the Lorentzian and Gaussian half–widths γL, γG:

x =
√

ln 2
ν − ν̂
γG

and y =
√

ln 2
γL

γG

. (22)

The Voigt function represents the real part of the complex function

W (z) ≡ K(x, y) + iL(x, y) =
i

π

∫ ∞
−∞

e−t
2

z − t
dt with z = x+ iy, (23)

that, for y > 0, is identical to the complex error function (probability function) defined
by [Abramowitz and Stegun, 1964]

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
= e−z

2

(
1 − erf(−iz)

)
. (24)

The complex error function satisfies the differential equation

w′(z) = − 2z · w(z) +
2i√
π

(25)

and the series and asymptotic expansions (where Γ is the gamma function)

w(z) =
∞∑
n=0

(iz)n

Γ
(
n
2

+ 1
) (26)

w(z) =
i

π

∞∑
k=0

Γ
(
k + 1

2

)
z2k+1

. (27)

8



Unfortunately, none of these functions can be evaluated in closed analytical form
and a large number of numerical algorithms have been developed in the past [Schreier,
1992]. Most modern algorithms for the Voigt function employ approximations for the
complex error function. Actually this approach has further advantages, in particular
it simultaneously provides derivatives of these functions, required for, e.g., sensitivity
analysis or optimization. Rational approximations [Ralston and Rabinowitz, 1978] have
been proven to be an efficient approach for a wide variety of functions, and have been
used successfully also for evaluation of the complex error function, e.g., Hui et al. [1978],
Humlicek [1979, 1982], Weideman [1994]. Whereas the Humlicek algorithms are based on
different approximations in different regions of the arguments, an attractive and unique
feature of the Hui–Armstrong–Wray and Weideman algorithms is their applicability in
the entire domain.

Hui et al. [1978] have developed complex rational approximations with M = 5 and
M = 6,

w(z) =
P (z̄)

Q(z̄)
=

M∑
m=0

amz̄
m

M+1∑
n=0

bnz̄n
where z̄ = y − ix. (28)

The coefficients am and bn are real valued with aM = 1/
√
π in accordance with the

asymptotic expansion (27), and a0/b0 ≈ 1 as required by K(0, 0) = 1, cf. the series
expansion (26). According to Hui et al., for M = 6 a relative accuracy of 6 digits is
provided in the entire x, y plane.

In many applications such as those considered here the Voigt or complex error function
has to be evaluated for a moderate to large array of grid points (x1, x2, . . . ) with constant
y. A complex polynomial in z̃ = −iz = y − ix with real coefficients am can be written
as a polynomial in x with complex coefficients depending on y, where the coefficients for
even powers of x are real and the coefficients of odd powers of x are purely imaginary,

P (z̄) =
M∑
m=0

am
(
y − ix

)m
=

M∑
m=0

dm(y) xm (29)

=
∑
m even

d′m xm + i
∑
m odd

d′′m xm = p′y(x) + ip′′y(x) = py(x)

with primes and double-primes denoting real and imaginary parts, respectively, and

dk = (−i)k
M−k∑
l=0

(
l + k

k

)
al+k y

l . (30)

Using a similar transformation for the denominator polynomialQ(z̄) −→ qy(x) =
∑

n enx
n

gives [Schreier and Kohlert, 2008]

w(x+ iy) =

M∑
m=0

dm(y)xm

M+1∑
n=0

en(y)xn
=

p′y(x) + ip′′y(x)

q′y(x) + iq′′y(x)
. (31)
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Straightforward implementation of (31) would require complex arithmetic. Hence it is
more efficient to use real variables only resulting in

K(x, y) =
p′y(x) q′y(x) + p′′y(x) q′′y(x)

q′y(x) q′y(x) + q′′y(x) q′′y(x)
(32a)

L(x, y) =
p′′y(x) q′y(x)− p′y(x) q′′y(x)

q′y(x) q′y(x) + q′′y(x) q′′y(x)
. (32b)

Thus instead of 12 complex multiplications and one complex division for the complex
rational approximation (28), equivalent to 54 real multiplications and one real division,
only 21 real multiplications and one real division are required to compute w = K + iL for
every grid point xi. Except for a small number of grid points the “preprocessing”, i.e.,
the evaluation of the polynomial coefficients dm and en (cf. appendix) is clearly negligible.

3.3 Multigrid algorithm

The problem is the efficient computation of a superposition of similar functions fl(x) over
a large region of its independent variable x,

F (xi) =
L∑
l=1

fl(xi) for xlo ≡ x0 < x1 < · · · < xi < · · · < xn ≡ xhi. (33)

Frequently the functions fl(x) vary rapidly only in a small region of the entire domain,
but the evaluation of F (x) covers a large x–interval where the individual fl is mostly
smooth. However, accurate modelling of the function sum requires appropriate sampling
of the x–grid, i.e., the grid interval size δx has to be chosen small enough to resolve the
details of fl(x) in the regions of strong variability. Thus, for an uniform/equidistant grid
the spacing δx is determined by the fine structure of the fl’s.

Computing fl(x) on a uniform, appropriately dense grid over the entire region of
interest is obviously not very efficient when fl is smooth everywhere except for a small
subinterval of [xlo, xhi]. The calculation is significantly accelerated when fl is decomposed
into rapidly and slowly varying contributions, where the fast part has to be computed
on a fine grid in the region of strong variability only and the smooth part is computed
on a coarse grid covering the entire interval of interest. Furthermore, if the smooth part
is a continuous function of x over the entire interval [xlo, xhi], the sum in (33) can be
performed separately for the rapidly and slowly varying contributions,

F fast(x) =
∑
l

f fast
l (x) where x ∈ {x0, . . . , xn} (fine grid) (34)

F smooth(X) =
∑
l

f smooth
l (X) where X ∈ {X0, . . . , XN} (coarse grid) (35)

and the interpolation to the fine grid x is required only once after the entire sum has been
evaluated,

F (x) = F fast(x) + I
[
F smooth(X)

]
(x) . (36)

Here I denotes an interpolation operator, i.e., I
[
F smooth

]
(x) is the interpolated sum

of smooth contributions (available at the coarse grid X) at the fine grid point x. In
order to guarantee an efficient interpolation, an equidistant set of N coarse grid points
X0, X1, . . . , XN with spacing ∆X satisfying ∆X/δx = n/N integer will be used (further-
more X0 = x0 and XN = xn). For convenience ratios of power two will be used, i.e.,
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Figure 2: Lorentzian line profile function (14) decomposed in a slowly varying contribution
(evaluated on a coarse grid) and a rapidly varying contribution evaluated on a fine grid
near the center only (Two–point Lagrange interpolation). The example corresponds to
CO2 cross sections at 1013.25 mb and 296 K; for clarity only the strongest lines have been
included.

n/N = 2m. Clearly, the larger the ratio, the larger the computational speed–up. How-
ever, for very large coarse grid spacings, errors due to inadequate sampling of the smooth
contribution to f become too big. For our applications ratios n/N = 4 and n/N = 8 have
turned out to provide a reasonable compromise between speed and accuracy.

Thus the problem of efficient calculation of the sum (33) has been transformed into
the problem of splitting off the smooth part of each fl, i.e.,

fl(x) = f smooth
l (x) + f fast

l (x) (37)

The simplest choice of the smooth function that automatically satisfies the constraints of
continuity is to use the function fl itself as smooth function f smooth

l , too. Note that the
sum of the smooth contributions F smooth is interpolated to the fine grid and then added
to the sum of the fine grid, quickly varying contributions. In order to compensate for the
interpolated smooth contributions in the regions of strong variability, the quickly varying
contribution is defined as

f fast
l (x) = fl(x)− I

[
f smooth

]
(x) for x in center region. (38)

Note that f fast
l or its first derivative may have discontinuities. In Fig. 2 this decomposition

is shown for the Lorentzian line shape.
The speed–up that can be achieved with the two–grid algorithm developed in the

previous subsection is essentially determined by the ratio of grid points on the fine and
coarse grid, i.e. with n/N = 4 or n/N = 8 only a small computational gain is possible.
A significant acceleration can be achieved by using further grids with increasing grid
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Figure 3: Error of the sum of some Lorentzians (14) evaluated with a two–grid approxi-
mation and linear and quadratic Lagrange interpolation. For two–point interpolation the
fine grid was used within νl±12γ around the line center. whereas for three–point interpo-
lation the fine grid extension was νl ± 10γ. The sum of Lorentzians (cross section, “XS”)
evaluated with the “brute force” and with the two–grid–algorithm are indistinguishable.
(Same example as in Fig. 2.)

point spacing. However, for our applications to spectral modelling the computational
overhead required to control a series of grids turned out to partly compensate the speed–
up provided by very coarse grids, and simply using three grids turned out to be efficient
[Schreier, 2006].

4 Verification and Applications

The standard approach to verification of LbL codes relies on cross checks against similar
codes. MIRART/GARLIC participated in two extensive intercomparisons.

4.1 AMIL2DA

In order to assess the consistency of level 2 data generated from measurements by the
MIPAS Fourier transform limb emission spectrometer onboard the ENVISAT satellite,
the AMIL2DA project aimed at careful comparison and characterization of algorithms
and data analysis stategies used by different European groups. An essential step of this
project was a cross comparison of the radiative transfer forward models to be used as
part of the group’s MIPAS data processing [von Clarmann et al., 2002]. The intercom-
parison was organized as a series of exercises, starting from simple settings proving basic
functionalities and proceeding to more complex and realistic scenarios. Accordingly the
first exercises considered the transmission of a single N2O line for different pressures and
temperatures, hence testing line shape computation and line strength conversion. In a
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Figure 4: AMIL2DA Forward model intercomparison (Exercise 20):
KOPRA line–by–line code [Stiller et al., 2002] and MIRART.
Limb view with tangent altitude 40 km, apodized FTS instrument line shape, finite field–
of–view, H2O, CO2, O3, N2O, and CH4; CKD–continuum [Clough et al., 1988].

second set of exercises radiance spectra for a limb viewing geometry with instrumental ef-
fects have been intercompared. Figure 4 shows a comparison of a limb emission spectrum,
revealing deviations well below one percent.

4.2 IRTMW01

A major objective of IRTMW01 was the intercomparison of radiative transfer codes in the
microwave spectral domain [Melsheimer et al., 2005]. Similar to the AMIL2DA intercom-
parison it was organized in a series of progressively more sophisticated “cases”, starting
with an assessment of Voigt line shape and molecular absorption coefficient calculations.
As for the corresponding AMIL2DA exercises MIRART exhibited slight deviations for
spectra at temperatures different from the database reference temperature, that have been
attributed to the use of different line strengths conversion approaches.

The purpose of case 3 was to check the correct implementation of the radiative trans-
fer algorithm, nb., the solution of the integrals in Eqs. (1) and (4). In order to allow
to discriminate different sources of possible deviations between the models, absorption
coefficients α(ν, z) have been pre–calculated by the University of Bremen group and used
as common input. Case 4 was aiming to test the entire computational chain of the codes
including LbL calculation, continuum corrections, and path quadrature. Geometries and
instrument settings were identical to case 3, thus changes from case 3 spectra to case 4
spectra have to come from differences in the input data or from differences in the cross
section and absorption coefficient calculations.

13
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Figure 5: IRTMW01 intercomparison: case 3 (left) and 4 (right) up–looking:
ARTS line–by-line code (University of Bremen, Bühler et al. [2005]) vs. MIRART.
O3 and O2, perfect antenna (i.e. infinitesimal FoV), single side band receiver with Gaussian
ILS function with half width 0.25 MHz.

-extract
lines -lbl2xs

xs -xs2ac
ac -ac2od

od

s

lbl2od

Figure 6: From Hitran/Geisa via cross sections and absorption coefficients to optical
depths.

The intercomparison was performed for different geometries, and for ideal monochro-
matic spectra as well as ILS (instrument line shape) and FoV (field-of-view) convolved
spectra. Figure 5 shows the results for the uplooking geometry: Whereas case 3 spectra
do not yield visible differences, slight deviations show up in case 4 for small zenith angles.
Similar results were also found for the case 3 and case 4 down looking and limb viewing
exercises.

5 Py4CaTS — The Python Scripts

Py4CAtS is a Python (www.python.org) re-implementation of the Fortran infrared ra-
diative transfer code MIRART/GARLIC. Clearly a pure Python implementations would
be by far too slow for a computational challening task such as line-by-line modeling, so
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Figure 7: Typical workflow for line-by-line modelling with Py4CAtS: Hitran/Geisa −→
line parameter extracts −→ cross sections −→ absorption coefficients −→ optical depth
(Note that on the left hand side the output files are not indicated (usually done with the
-o option)

Py4CAtS makes heavy use of the Numeric Python extensions (www.numpy.org, Langtan-
gen [2004]). The motivation to rewrite the code in Python was to provide easy access to
intermediate quantities such as cross sections, absorption coefficients, or optical depths
that is sometimes quite useful to deepen the understanding of the “physics” involved
in a particular remote sensing application. Furthermore this appeared to be a way to-
wards “computational steering”, i.e., combining the best of two worlds by letting Python
do the control, book-keeping etc., and executing the compute-intensive code-sections in
compiled Fortran. However, the original approach with PyFort Dubois and Yang [1999]
turned out to be somewhat difficult to port from machine to machine, and the recent
advances with Numeric Python (allowing highly optimized array-processing) made this
need for Fortran–Python interfacing less critical.

In Py4CAtS the individual steps of an infrared radiative transfer computation are
implemented in separate scripts, see Fig. 6:

• extract (select) lines of relevant molecules in the spectral range of interest

• lbl2xs compute line-by-line cross sections for given pressure(s) and temperature(s)

• xs2ac multiply cross sections with number densities and sum over all molecules

• ac2od integrate absorption coefficients along the line-of-sight through atmosphere

• . . . . . .

All these scripts read their input from external files, and save their results on files, too, see
the workflow indicated in Fig. 7. As a consequence, I/O operations can become quite time
consuming (as the number of spectral grid points can become quite big); Furthermore a
large part of the scripts was devoted to check the consistency of the various input files
(e.g., the xs2ac script had to test that the different cross section files cover the same
spectral range (or at least a common subset) for the same altitude range etc.) On the
other hand, circumventing/bypassing some of the intermediate files is straightforward,
especially if one is mainly interested in the final optical depth, cf. Fig. 8:

• lbl2od compute line-by–line cross sections, combine to absorption coefficients, and
integrate through the atmosphere

15
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Figure 8: Typical workflow: From Hitran/Geisa line parameter extract directly to optical
depths.
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Figure 9: Impact of line wings on cross section in ODIN 501 GHz channel: H2O.
A series of cross sections has been computed taking into account more and more lines to
the left and right of the 16 – 17 cm−1 window.
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